| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fusgredgfi.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
fusgredgfi.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 3 |
|
simpl |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑉 = { 𝑣 } ) → 𝐺 ∈ USGraph ) |
| 4 |
|
vex |
⊢ 𝑣 ∈ V |
| 5 |
1
|
eqeq1i |
⊢ ( 𝑉 = { 𝑣 } ↔ ( Vtx ‘ 𝐺 ) = { 𝑣 } ) |
| 6 |
5
|
biimpi |
⊢ ( 𝑉 = { 𝑣 } → ( Vtx ‘ 𝐺 ) = { 𝑣 } ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑉 = { 𝑣 } ) → ( Vtx ‘ 𝐺 ) = { 𝑣 } ) |
| 8 |
|
usgr1vr |
⊢ ( ( 𝑣 ∈ V ∧ ( Vtx ‘ 𝐺 ) = { 𝑣 } ) → ( 𝐺 ∈ USGraph → ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 9 |
4 7 8
|
sylancr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑉 = { 𝑣 } ) → ( 𝐺 ∈ USGraph → ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 10 |
3 9
|
mpd |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑉 = { 𝑣 } ) → ( iEdg ‘ 𝐺 ) = ∅ ) |
| 11 |
2
|
eqeq1i |
⊢ ( 𝐸 = ∅ ↔ ( Edg ‘ 𝐺 ) = ∅ ) |
| 12 |
|
usgruhgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UHGraph ) |
| 13 |
|
uhgriedg0edg0 |
⊢ ( 𝐺 ∈ UHGraph → ( ( Edg ‘ 𝐺 ) = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 14 |
12 13
|
syl |
⊢ ( 𝐺 ∈ USGraph → ( ( Edg ‘ 𝐺 ) = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑉 = { 𝑣 } ) → ( ( Edg ‘ 𝐺 ) = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 16 |
11 15
|
bitrid |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑉 = { 𝑣 } ) → ( 𝐸 = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 17 |
10 16
|
mpbird |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑉 = { 𝑣 } ) → 𝐸 = ∅ ) |
| 18 |
17
|
ex |
⊢ ( 𝐺 ∈ USGraph → ( 𝑉 = { 𝑣 } → 𝐸 = ∅ ) ) |
| 19 |
18
|
exlimdv |
⊢ ( 𝐺 ∈ USGraph → ( ∃ 𝑣 𝑉 = { 𝑣 } → 𝐸 = ∅ ) ) |
| 20 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
| 21 |
|
hash1snb |
⊢ ( 𝑉 ∈ V → ( ( ♯ ‘ 𝑉 ) = 1 ↔ ∃ 𝑣 𝑉 = { 𝑣 } ) ) |
| 22 |
20 21
|
mp1i |
⊢ ( 𝐺 ∈ USGraph → ( ( ♯ ‘ 𝑉 ) = 1 ↔ ∃ 𝑣 𝑉 = { 𝑣 } ) ) |
| 23 |
2
|
fvexi |
⊢ 𝐸 ∈ V |
| 24 |
|
hasheq0 |
⊢ ( 𝐸 ∈ V → ( ( ♯ ‘ 𝐸 ) = 0 ↔ 𝐸 = ∅ ) ) |
| 25 |
23 24
|
mp1i |
⊢ ( 𝐺 ∈ USGraph → ( ( ♯ ‘ 𝐸 ) = 0 ↔ 𝐸 = ∅ ) ) |
| 26 |
19 22 25
|
3imtr4d |
⊢ ( 𝐺 ∈ USGraph → ( ( ♯ ‘ 𝑉 ) = 1 → ( ♯ ‘ 𝐸 ) = 0 ) ) |
| 27 |
26
|
imp |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( ♯ ‘ 𝐸 ) = 0 ) |