Step |
Hyp |
Ref |
Expression |
1 |
|
usgr1v |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) → ( 𝐺 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ∧ Fun ( iEdg ‘ 𝐺 ) ) → ( 𝐺 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
3 |
|
funrel |
⊢ ( Fun ( iEdg ‘ 𝐺 ) → Rel ( iEdg ‘ 𝐺 ) ) |
4 |
|
relrn0 |
⊢ ( Rel ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐺 ) = ∅ ↔ ran ( iEdg ‘ 𝐺 ) = ∅ ) ) |
5 |
3 4
|
syl |
⊢ ( Fun ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐺 ) = ∅ ↔ ran ( iEdg ‘ 𝐺 ) = ∅ ) ) |
6 |
5
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ∧ Fun ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) = ∅ ↔ ran ( iEdg ‘ 𝐺 ) = ∅ ) ) |
7 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
8 |
7
|
eqcomi |
⊢ ran ( iEdg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
9 |
8
|
eqeq1i |
⊢ ( ran ( iEdg ‘ 𝐺 ) = ∅ ↔ ( Edg ‘ 𝐺 ) = ∅ ) |
10 |
9
|
a1i |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ∧ Fun ( iEdg ‘ 𝐺 ) ) → ( ran ( iEdg ‘ 𝐺 ) = ∅ ↔ ( Edg ‘ 𝐺 ) = ∅ ) ) |
11 |
2 6 10
|
3bitrd |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ∧ Fun ( iEdg ‘ 𝐺 ) ) → ( 𝐺 ∈ USGraph ↔ ( Edg ‘ 𝐺 ) = ∅ ) ) |