| Step | Hyp | Ref | Expression | 
						
							| 1 |  | usgruhgr | ⊢ ( 𝐺  ∈  USGraph  →  𝐺  ∈  UHGraph ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  ( Vtx ‘ 𝐺 )  =  { 𝐴 } )  ∧  𝐺  ∈  USGraph )  →  𝐺  ∈  UHGraph ) | 
						
							| 3 |  | fveq2 | ⊢ ( ( Vtx ‘ 𝐺 )  =  { 𝐴 }  →  ( ♯ ‘ ( Vtx ‘ 𝐺 ) )  =  ( ♯ ‘ { 𝐴 } ) ) | 
						
							| 4 |  | hashsng | ⊢ ( 𝐴  ∈  𝑋  →  ( ♯ ‘ { 𝐴 } )  =  1 ) | 
						
							| 5 | 3 4 | sylan9eqr | ⊢ ( ( 𝐴  ∈  𝑋  ∧  ( Vtx ‘ 𝐺 )  =  { 𝐴 } )  →  ( ♯ ‘ ( Vtx ‘ 𝐺 ) )  =  1 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  ( Vtx ‘ 𝐺 )  =  { 𝐴 } )  ∧  𝐺  ∈  USGraph )  →  ( ♯ ‘ ( Vtx ‘ 𝐺 ) )  =  1 ) | 
						
							| 7 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 8 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 9 | 7 8 | usgrislfuspgr | ⊢ ( 𝐺  ∈  USGraph  ↔  ( 𝐺  ∈  USPGraph  ∧  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ { 𝑥  ∈  𝒫  ( Vtx ‘ 𝐺 )  ∣  2  ≤  ( ♯ ‘ 𝑥 ) } ) ) | 
						
							| 10 | 9 | simprbi | ⊢ ( 𝐺  ∈  USGraph  →  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ { 𝑥  ∈  𝒫  ( Vtx ‘ 𝐺 )  ∣  2  ≤  ( ♯ ‘ 𝑥 ) } ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  ( Vtx ‘ 𝐺 )  =  { 𝐴 } )  ∧  𝐺  ∈  USGraph )  →  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ { 𝑥  ∈  𝒫  ( Vtx ‘ 𝐺 )  ∣  2  ≤  ( ♯ ‘ 𝑥 ) } ) | 
						
							| 12 |  | eqid | ⊢ { 𝑥  ∈  𝒫  ( Vtx ‘ 𝐺 )  ∣  2  ≤  ( ♯ ‘ 𝑥 ) }  =  { 𝑥  ∈  𝒫  ( Vtx ‘ 𝐺 )  ∣  2  ≤  ( ♯ ‘ 𝑥 ) } | 
						
							| 13 | 7 8 12 | lfuhgr1v0e | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  ( ♯ ‘ ( Vtx ‘ 𝐺 ) )  =  1  ∧  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ { 𝑥  ∈  𝒫  ( Vtx ‘ 𝐺 )  ∣  2  ≤  ( ♯ ‘ 𝑥 ) } )  →  ( Edg ‘ 𝐺 )  =  ∅ ) | 
						
							| 14 | 2 6 11 13 | syl3anc | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  ( Vtx ‘ 𝐺 )  =  { 𝐴 } )  ∧  𝐺  ∈  USGraph )  →  ( Edg ‘ 𝐺 )  =  ∅ ) | 
						
							| 15 |  | uhgriedg0edg0 | ⊢ ( 𝐺  ∈  UHGraph  →  ( ( Edg ‘ 𝐺 )  =  ∅  ↔  ( iEdg ‘ 𝐺 )  =  ∅ ) ) | 
						
							| 16 | 1 15 | syl | ⊢ ( 𝐺  ∈  USGraph  →  ( ( Edg ‘ 𝐺 )  =  ∅  ↔  ( iEdg ‘ 𝐺 )  =  ∅ ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  ( Vtx ‘ 𝐺 )  =  { 𝐴 } )  ∧  𝐺  ∈  USGraph )  →  ( ( Edg ‘ 𝐺 )  =  ∅  ↔  ( iEdg ‘ 𝐺 )  =  ∅ ) ) | 
						
							| 18 | 14 17 | mpbid | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  ( Vtx ‘ 𝐺 )  =  { 𝐴 } )  ∧  𝐺  ∈  USGraph )  →  ( iEdg ‘ 𝐺 )  =  ∅ ) | 
						
							| 19 | 18 | ex | ⊢ ( ( 𝐴  ∈  𝑋  ∧  ( Vtx ‘ 𝐺 )  =  { 𝐴 } )  →  ( 𝐺  ∈  USGraph  →  ( iEdg ‘ 𝐺 )  =  ∅ ) ) |