Database
GRAPH THEORY
Undirected graphs
Undirected simple graphs
usgr2edg
Metamath Proof Explorer
Description: If a vertex is adjacent to two different vertices in a simple graph,
there are more than one edges starting at this vertex. (Contributed by Alexander van der Vekens , 10-Dec-2017) (Revised by AV , 17-Oct-2020)
(Proof shortened by AV , 11-Feb-2021)
Ref
Expression
Hypotheses
usgrf1oedg.i
⊢ 𝐼 = ( iEdg ‘ 𝐺 )
usgrf1oedg.e
⊢ 𝐸 = ( Edg ‘ 𝐺 )
Assertion
usgr2edg
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ∃ 𝑥 ∈ dom 𝐼 ∃ 𝑦 ∈ dom 𝐼 ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) )
Proof
Step
Hyp
Ref
Expression
1
usgrf1oedg.i
⊢ 𝐼 = ( iEdg ‘ 𝐺 )
2
usgrf1oedg.e
⊢ 𝐸 = ( Edg ‘ 𝐺 )
3
usgrumgr
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph )
4
1 2
umgr2edg
⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ∃ 𝑥 ∈ dom 𝐼 ∃ 𝑦 ∈ dom 𝐼 ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) )
5
3 4
sylanl1
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ∃ 𝑥 ∈ dom 𝐼 ∃ 𝑦 ∈ dom 𝐼 ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) )