Metamath Proof Explorer


Theorem usgr2edg1

Description: If a vertex is adjacent to two different vertices in a simple graph, there is not only one edge starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017) (Revised by AV, 17-Oct-2020) (Proof shortened by AV, 8-Jun-2021)

Ref Expression
Hypotheses usgrf1oedg.i 𝐼 = ( iEdg ‘ 𝐺 )
usgrf1oedg.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion usgr2edg1 ( ( ( 𝐺 ∈ USGraph ∧ 𝐴𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ¬ ∃! 𝑥 ∈ dom 𝐼 𝑁 ∈ ( 𝐼𝑥 ) )

Proof

Step Hyp Ref Expression
1 usgrf1oedg.i 𝐼 = ( iEdg ‘ 𝐺 )
2 usgrf1oedg.e 𝐸 = ( Edg ‘ 𝐺 )
3 usgrumgr ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph )
4 1 2 umgr2edg1 ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ¬ ∃! 𝑥 ∈ dom 𝐼 𝑁 ∈ ( 𝐼𝑥 ) )
5 3 4 sylanl1 ( ( ( 𝐺 ∈ USGraph ∧ 𝐴𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ¬ ∃! 𝑥 ∈ dom 𝐼 𝑁 ∈ ( 𝐼𝑥 ) )