Step |
Hyp |
Ref |
Expression |
1 |
|
usgr2pthlem.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
usgr2pthlem.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
usgr2pthspth |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) ) |
4 |
|
usgrupgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UPGraph ) |
5 |
4
|
adantr |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → 𝐺 ∈ UPGraph ) |
6 |
|
isspth |
⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) |
7 |
6
|
a1i |
⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) ) |
8 |
1 2
|
upgrf1istrl |
⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) ) |
9 |
8
|
anbi1d |
⊢ ( 𝐺 ∈ UPGraph → ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ↔ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) ) |
10 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 2 ) ) |
11 |
|
f1eq2 |
⊢ ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 2 ) → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ↔ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) |
12 |
10 11
|
syl |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ↔ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) |
13 |
12
|
biimpd |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) |
15 |
14
|
com12 |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) |
17 |
16
|
ad2antrl |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) |
18 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ... 2 ) ) |
19 |
18
|
feq2d |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ↔ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ) |
20 |
|
df-f1 |
⊢ ( 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ↔ ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ∧ Fun ◡ 𝑃 ) ) |
21 |
20
|
simplbi2 |
⊢ ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 → ( Fun ◡ 𝑃 → 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ) |
22 |
21
|
a1i |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 → ( Fun ◡ 𝑃 → 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ) ) |
23 |
19 22
|
sylbid |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( Fun ◡ 𝑃 → 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ) ) |
24 |
23
|
adantl |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( Fun ◡ 𝑃 → 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ) ) |
25 |
24
|
com3l |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( Fun ◡ 𝑃 → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ) ) |
26 |
25
|
3ad2ant2 |
⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ( Fun ◡ 𝑃 → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ) ) |
27 |
26
|
imp |
⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ) |
28 |
27
|
adantl |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ) |
29 |
1 2
|
usgr2pthlem |
⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) |
30 |
29
|
ad2antrl |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) |
31 |
17 28 30
|
3jcad |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) |
32 |
31
|
ex |
⊢ ( 𝐺 ∈ UPGraph → ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
33 |
9 32
|
sylbid |
⊢ ( 𝐺 ∈ UPGraph → ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
34 |
7 33
|
sylbid |
⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
35 |
34
|
com23 |
⊢ ( 𝐺 ∈ UPGraph → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
36 |
5 35
|
mpcom |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) |
37 |
3 36
|
sylbid |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) |
38 |
37
|
ex |
⊢ ( 𝐺 ∈ USGraph → ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
39 |
38
|
impcomd |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) |
40 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
41 |
|
f1f |
⊢ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → 𝐹 : ( 0 ..^ 2 ) ⟶ dom 𝐼 ) |
42 |
|
fnfzo0hash |
⊢ ( ( 2 ∈ ℕ0 ∧ 𝐹 : ( 0 ..^ 2 ) ⟶ dom 𝐼 ) → ( ♯ ‘ 𝐹 ) = 2 ) |
43 |
40 41 42
|
sylancr |
⊢ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → ( ♯ ‘ 𝐹 ) = 2 ) |
44 |
|
oveq2 |
⊢ ( 2 = ( ♯ ‘ 𝐹 ) → ( 0 ..^ 2 ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
45 |
44
|
eqcoms |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ..^ 2 ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
46 |
|
f1eq2 |
⊢ ( ( 0 ..^ 2 ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ↔ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) ) |
47 |
45 46
|
syl |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ↔ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) ) |
48 |
47
|
biimpd |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) ) |
49 |
48
|
imp |
⊢ ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
50 |
49
|
adantr |
⊢ ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
51 |
50
|
ad2antrr |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
52 |
|
f1f |
⊢ ( 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 → 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) |
53 |
|
oveq2 |
⊢ ( 2 = ( ♯ ‘ 𝐹 ) → ( 0 ... 2 ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
54 |
53
|
eqcoms |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ... 2 ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
55 |
54
|
adantr |
⊢ ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) → ( 0 ... 2 ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
56 |
55
|
feq2d |
⊢ ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) → ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ↔ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) |
57 |
52 56
|
syl5ib |
⊢ ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) → ( 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) |
58 |
57
|
imp |
⊢ ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
59 |
58
|
ad2antrr |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
60 |
|
eqcom |
⊢ ( ( 𝑃 ‘ 0 ) = 𝑥 ↔ 𝑥 = ( 𝑃 ‘ 0 ) ) |
61 |
60
|
biimpi |
⊢ ( ( 𝑃 ‘ 0 ) = 𝑥 → 𝑥 = ( 𝑃 ‘ 0 ) ) |
62 |
61
|
3ad2ant1 |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → 𝑥 = ( 𝑃 ‘ 0 ) ) |
63 |
|
eqcom |
⊢ ( ( 𝑃 ‘ 1 ) = 𝑦 ↔ 𝑦 = ( 𝑃 ‘ 1 ) ) |
64 |
63
|
biimpi |
⊢ ( ( 𝑃 ‘ 1 ) = 𝑦 → 𝑦 = ( 𝑃 ‘ 1 ) ) |
65 |
64
|
3ad2ant2 |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → 𝑦 = ( 𝑃 ‘ 1 ) ) |
66 |
62 65
|
preq12d |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → { 𝑥 , 𝑦 } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) |
67 |
66
|
eqeq2d |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) |
68 |
67
|
biimpcd |
⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } → ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) |
69 |
68
|
adantr |
⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) → ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) |
70 |
69
|
impcom |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) |
71 |
|
eqcom |
⊢ ( ( 𝑃 ‘ 2 ) = 𝑧 ↔ 𝑧 = ( 𝑃 ‘ 2 ) ) |
72 |
71
|
biimpi |
⊢ ( ( 𝑃 ‘ 2 ) = 𝑧 → 𝑧 = ( 𝑃 ‘ 2 ) ) |
73 |
72
|
3ad2ant3 |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → 𝑧 = ( 𝑃 ‘ 2 ) ) |
74 |
65 73
|
preq12d |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → { 𝑦 , 𝑧 } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
75 |
74
|
eqeq2d |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
76 |
75
|
biimpcd |
⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } → ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
77 |
76
|
adantl |
⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) → ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
78 |
77
|
impcom |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
79 |
70 78
|
jca |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
80 |
79
|
rexlimivw |
⊢ ( ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
81 |
80
|
rexlimivw |
⊢ ( ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
82 |
81
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
83 |
82
|
a1i13 |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( 𝐺 ∈ USGraph → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ) ) |
84 |
|
fzo0to2pr |
⊢ ( 0 ..^ 2 ) = { 0 , 1 } |
85 |
10 84
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = { 0 , 1 } ) |
86 |
85
|
raleqdv |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ∀ 𝑖 ∈ { 0 , 1 } ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
87 |
|
2wlklem |
⊢ ( ∀ 𝑖 ∈ { 0 , 1 } ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
88 |
86 87
|
bitrdi |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ) |
89 |
88
|
imbi2d |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ( 𝐺 ∈ USGraph → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ↔ ( 𝐺 ∈ USGraph → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ) ) |
90 |
83 89
|
sylibrd |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( 𝐺 ∈ USGraph → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) ) |
91 |
90
|
ad2antrr |
⊢ ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( 𝐺 ∈ USGraph → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) ) |
92 |
91
|
imp |
⊢ ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) → ( 𝐺 ∈ USGraph → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
93 |
92
|
imp |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) |
94 |
51 59 93
|
3jca |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
95 |
20
|
simprbi |
⊢ ( 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 → Fun ◡ 𝑃 ) |
96 |
95
|
adantl |
⊢ ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) → Fun ◡ 𝑃 ) |
97 |
96
|
ad2antrr |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → Fun ◡ 𝑃 ) |
98 |
94 97
|
jca |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) |
99 |
7 9
|
bitrd |
⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) ) |
100 |
4 99
|
syl |
⊢ ( 𝐺 ∈ USGraph → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) ) |
101 |
100
|
adantl |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) ) |
102 |
98 101
|
mpbird |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) |
103 |
|
simpr |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → 𝐺 ∈ USGraph ) |
104 |
|
simp-4l |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → ( ♯ ‘ 𝐹 ) = 2 ) |
105 |
103 104 3
|
syl2anc |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) ) |
106 |
102 105
|
mpbird |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |
107 |
106 104
|
jca |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ) |
108 |
107
|
ex |
⊢ ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) → ( 𝐺 ∈ USGraph → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ) ) |
109 |
108
|
exp41 |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → ( 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( 𝐺 ∈ USGraph → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ) ) ) ) ) |
110 |
43 109
|
mpcom |
⊢ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → ( 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( 𝐺 ∈ USGraph → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ) ) ) ) |
111 |
110
|
3imp |
⊢ ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) → ( 𝐺 ∈ USGraph → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ) ) |
112 |
111
|
com12 |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ) ) |
113 |
39 112
|
impbid |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ↔ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) |