Step |
Hyp |
Ref |
Expression |
1 |
|
usgr2pthlem.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
usgr2pthlem.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
4 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
5 |
|
0le2 |
⊢ 0 ≤ 2 |
6 |
|
elfz2nn0 |
⊢ ( 0 ∈ ( 0 ... 2 ) ↔ ( 0 ∈ ℕ0 ∧ 2 ∈ ℕ0 ∧ 0 ≤ 2 ) ) |
7 |
3 4 5 6
|
mpbir3an |
⊢ 0 ∈ ( 0 ... 2 ) |
8 |
|
ffvelrn |
⊢ ( ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ∧ 0 ∈ ( 0 ... 2 ) ) → ( 𝑃 ‘ 0 ) ∈ 𝑉 ) |
9 |
7 8
|
mpan2 |
⊢ ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 → ( 𝑃 ‘ 0 ) ∈ 𝑉 ) |
10 |
9
|
adantl |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 0 ) ∈ 𝑉 ) |
11 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
12 |
|
1le2 |
⊢ 1 ≤ 2 |
13 |
|
elfz2nn0 |
⊢ ( 1 ∈ ( 0 ... 2 ) ↔ ( 1 ∈ ℕ0 ∧ 2 ∈ ℕ0 ∧ 1 ≤ 2 ) ) |
14 |
11 4 12 13
|
mpbir3an |
⊢ 1 ∈ ( 0 ... 2 ) |
15 |
|
ffvelrn |
⊢ ( ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ∧ 1 ∈ ( 0 ... 2 ) ) → ( 𝑃 ‘ 1 ) ∈ 𝑉 ) |
16 |
14 15
|
mpan2 |
⊢ ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 → ( 𝑃 ‘ 1 ) ∈ 𝑉 ) |
17 |
16
|
adantl |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 1 ) ∈ 𝑉 ) |
18 |
|
simpr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) → 𝐺 ∈ USGraph ) |
19 |
|
fvex |
⊢ ( 𝑃 ‘ 1 ) ∈ V |
20 |
18 19
|
jctir |
⊢ ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝐺 ∈ USGraph ∧ ( 𝑃 ‘ 1 ) ∈ V ) ) |
21 |
|
prcom |
⊢ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 0 ) } |
22 |
21
|
eqeq2i |
⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 0 ) } ) |
23 |
22
|
biimpi |
⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 0 ) } ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 0 ) } ) |
25 |
24
|
ad2antlr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 0 ) } ) |
26 |
2
|
usgrnloopv |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝑃 ‘ 1 ) ∈ V ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 0 ) } → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 0 ) ) ) |
27 |
20 25 26
|
sylc |
⊢ ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 0 ) ) |
28 |
27
|
adantr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 0 ) ) |
29 |
19
|
elsn |
⊢ ( ( 𝑃 ‘ 1 ) ∈ { ( 𝑃 ‘ 0 ) } ↔ ( 𝑃 ‘ 1 ) = ( 𝑃 ‘ 0 ) ) |
30 |
29
|
necon3bbii |
⊢ ( ¬ ( 𝑃 ‘ 1 ) ∈ { ( 𝑃 ‘ 0 ) } ↔ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 0 ) ) |
31 |
28 30
|
sylibr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ¬ ( 𝑃 ‘ 1 ) ∈ { ( 𝑃 ‘ 0 ) } ) |
32 |
17 31
|
eldifd |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 1 ) ∈ ( 𝑉 ∖ { ( 𝑃 ‘ 0 ) } ) ) |
33 |
32
|
adantr |
⊢ ( ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ∧ 𝑥 = ( 𝑃 ‘ 0 ) ) → ( 𝑃 ‘ 1 ) ∈ ( 𝑉 ∖ { ( 𝑃 ‘ 0 ) } ) ) |
34 |
|
sneq |
⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → { 𝑥 } = { ( 𝑃 ‘ 0 ) } ) |
35 |
34
|
difeq2d |
⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → ( 𝑉 ∖ { 𝑥 } ) = ( 𝑉 ∖ { ( 𝑃 ‘ 0 ) } ) ) |
36 |
35
|
eleq2d |
⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → ( ( 𝑃 ‘ 1 ) ∈ ( 𝑉 ∖ { 𝑥 } ) ↔ ( 𝑃 ‘ 1 ) ∈ ( 𝑉 ∖ { ( 𝑃 ‘ 0 ) } ) ) ) |
37 |
36
|
adantl |
⊢ ( ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ∧ 𝑥 = ( 𝑃 ‘ 0 ) ) → ( ( 𝑃 ‘ 1 ) ∈ ( 𝑉 ∖ { 𝑥 } ) ↔ ( 𝑃 ‘ 1 ) ∈ ( 𝑉 ∖ { ( 𝑃 ‘ 0 ) } ) ) ) |
38 |
33 37
|
mpbird |
⊢ ( ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ∧ 𝑥 = ( 𝑃 ‘ 0 ) ) → ( 𝑃 ‘ 1 ) ∈ ( 𝑉 ∖ { 𝑥 } ) ) |
39 |
|
2re |
⊢ 2 ∈ ℝ |
40 |
39
|
leidi |
⊢ 2 ≤ 2 |
41 |
|
elfz2nn0 |
⊢ ( 2 ∈ ( 0 ... 2 ) ↔ ( 2 ∈ ℕ0 ∧ 2 ∈ ℕ0 ∧ 2 ≤ 2 ) ) |
42 |
4 4 40 41
|
mpbir3an |
⊢ 2 ∈ ( 0 ... 2 ) |
43 |
|
ffvelrn |
⊢ ( ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ∧ 2 ∈ ( 0 ... 2 ) ) → ( 𝑃 ‘ 2 ) ∈ 𝑉 ) |
44 |
42 43
|
mpan2 |
⊢ ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 → ( 𝑃 ‘ 2 ) ∈ 𝑉 ) |
45 |
44
|
adantl |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 2 ) ∈ 𝑉 ) |
46 |
2
|
usgrf1 |
⊢ ( 𝐺 ∈ USGraph → 𝐼 : dom 𝐼 –1-1→ ran 𝐼 ) |
47 |
46
|
ad2antlr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → 𝐼 : dom 𝐼 –1-1→ ran 𝐼 ) |
48 |
|
simpl |
⊢ ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) → 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) |
49 |
48
|
ad2antrr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) |
50 |
47 49
|
jca |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( 𝐼 : dom 𝐼 –1-1→ ran 𝐼 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) |
51 |
|
2nn |
⊢ 2 ∈ ℕ |
52 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 2 ) ↔ 2 ∈ ℕ ) |
53 |
51 52
|
mpbir |
⊢ 0 ∈ ( 0 ..^ 2 ) |
54 |
|
1lt2 |
⊢ 1 < 2 |
55 |
|
elfzo0 |
⊢ ( 1 ∈ ( 0 ..^ 2 ) ↔ ( 1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2 ) ) |
56 |
11 51 54 55
|
mpbir3an |
⊢ 1 ∈ ( 0 ..^ 2 ) |
57 |
53 56
|
pm3.2i |
⊢ ( 0 ∈ ( 0 ..^ 2 ) ∧ 1 ∈ ( 0 ..^ 2 ) ) |
58 |
57
|
a1i |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( 0 ∈ ( 0 ..^ 2 ) ∧ 1 ∈ ( 0 ..^ 2 ) ) ) |
59 |
|
0ne1 |
⊢ 0 ≠ 1 |
60 |
59
|
a1i |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → 0 ≠ 1 ) |
61 |
50 58 60
|
3jca |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( ( 𝐼 : dom 𝐼 –1-1→ ran 𝐼 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ ( 0 ∈ ( 0 ..^ 2 ) ∧ 1 ∈ ( 0 ..^ 2 ) ) ∧ 0 ≠ 1 ) ) |
62 |
|
simpr |
⊢ ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
63 |
62
|
ad2antrr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
64 |
|
2f1fvneq |
⊢ ( ( ( 𝐼 : dom 𝐼 –1-1→ ran 𝐼 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ ( 0 ∈ ( 0 ..^ 2 ) ∧ 1 ∈ ( 0 ..^ 2 ) ) ∧ 0 ≠ 1 ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ≠ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
65 |
61 63 64
|
sylc |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ≠ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
66 |
|
necom |
⊢ ( ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 0 ) ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) |
67 |
|
fvex |
⊢ ( 𝑃 ‘ 0 ) ∈ V |
68 |
|
fvex |
⊢ ( 𝑃 ‘ 2 ) ∈ V |
69 |
67 19 68
|
3pm3.2i |
⊢ ( ( 𝑃 ‘ 0 ) ∈ V ∧ ( 𝑃 ‘ 1 ) ∈ V ∧ ( 𝑃 ‘ 2 ) ∈ V ) |
70 |
|
fvexd |
⊢ ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝑃 ‘ 0 ) ∈ V ) |
71 |
|
simpl |
⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) |
72 |
71
|
ad2antlr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) |
73 |
18 70 72
|
jca31 |
⊢ ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) → ( ( 𝐺 ∈ USGraph ∧ ( 𝑃 ‘ 0 ) ∈ V ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) |
74 |
73
|
adantr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( ( 𝐺 ∈ USGraph ∧ ( 𝑃 ‘ 0 ) ∈ V ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) |
75 |
2
|
usgrnloopv |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝑃 ‘ 0 ) ∈ V ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
76 |
75
|
imp |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑃 ‘ 0 ) ∈ V ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) |
77 |
74 76
|
syl |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) |
78 |
|
pr1nebg |
⊢ ( ( ( ( 𝑃 ‘ 0 ) ∈ V ∧ ( 𝑃 ‘ 1 ) ∈ V ∧ ( 𝑃 ‘ 2 ) ∈ V ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ↔ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ≠ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
79 |
69 77 78
|
sylancr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ↔ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ≠ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
80 |
66 79
|
syl5bb |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 0 ) ↔ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ≠ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
81 |
65 80
|
mpbird |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 0 ) ) |
82 |
|
fvexd |
⊢ ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝑃 ‘ 2 ) ∈ V ) |
83 |
|
prcom |
⊢ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } |
84 |
83
|
eqeq2i |
⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } ) |
85 |
84
|
biimpi |
⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } → ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } ) |
86 |
85
|
adantl |
⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } ) |
87 |
86
|
ad2antlr |
⊢ ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } ) |
88 |
18 82 87
|
jca31 |
⊢ ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) → ( ( 𝐺 ∈ USGraph ∧ ( 𝑃 ‘ 2 ) ∈ V ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } ) ) |
89 |
88
|
adantr |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( ( 𝐺 ∈ USGraph ∧ ( 𝑃 ‘ 2 ) ∈ V ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } ) ) |
90 |
2
|
usgrnloopv |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝑃 ‘ 2 ) ∈ V ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
91 |
90
|
imp |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑃 ‘ 2 ) ∈ V ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } ) → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) |
92 |
89 91
|
syl |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) |
93 |
81 92
|
nelprd |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ¬ ( 𝑃 ‘ 2 ) ∈ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) |
94 |
45 93
|
eldifd |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 2 ) ∈ ( 𝑉 ∖ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) |
95 |
94
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ∧ 𝑥 = ( 𝑃 ‘ 0 ) ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) → ( 𝑃 ‘ 2 ) ∈ ( 𝑉 ∖ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) |
96 |
|
preq12 |
⊢ ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) → { 𝑥 , 𝑦 } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) |
97 |
96
|
difeq2d |
⊢ ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) → ( 𝑉 ∖ { 𝑥 , 𝑦 } ) = ( 𝑉 ∖ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) |
98 |
97
|
eleq2d |
⊢ ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) → ( ( 𝑃 ‘ 2 ) ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ↔ ( 𝑃 ‘ 2 ) ∈ ( 𝑉 ∖ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) ) |
99 |
98
|
adantll |
⊢ ( ( ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ∧ 𝑥 = ( 𝑃 ‘ 0 ) ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) → ( ( 𝑃 ‘ 2 ) ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ↔ ( 𝑃 ‘ 2 ) ∈ ( 𝑉 ∖ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) ) |
100 |
95 99
|
mpbird |
⊢ ( ( ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ∧ 𝑥 = ( 𝑃 ‘ 0 ) ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) → ( 𝑃 ‘ 2 ) ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ) |
101 |
|
eqcom |
⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) ↔ ( 𝑃 ‘ 0 ) = 𝑥 ) |
102 |
|
eqcom |
⊢ ( 𝑦 = ( 𝑃 ‘ 1 ) ↔ ( 𝑃 ‘ 1 ) = 𝑦 ) |
103 |
|
eqcom |
⊢ ( 𝑧 = ( 𝑃 ‘ 2 ) ↔ ( 𝑃 ‘ 2 ) = 𝑧 ) |
104 |
101 102 103
|
3anbi123i |
⊢ ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) ↔ ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ) |
105 |
104
|
biimpi |
⊢ ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) → ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ) |
106 |
105
|
ad4ant123 |
⊢ ( ( ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) → ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ) |
107 |
101
|
biimpi |
⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → ( 𝑃 ‘ 0 ) = 𝑥 ) |
108 |
107
|
ad2antrr |
⊢ ( ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) → ( 𝑃 ‘ 0 ) = 𝑥 ) |
109 |
102
|
biimpi |
⊢ ( 𝑦 = ( 𝑃 ‘ 1 ) → ( 𝑃 ‘ 1 ) = 𝑦 ) |
110 |
109
|
ad2antlr |
⊢ ( ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) → ( 𝑃 ‘ 1 ) = 𝑦 ) |
111 |
108 110
|
preq12d |
⊢ ( ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } = { 𝑥 , 𝑦 } ) |
112 |
111
|
eqeq2d |
⊢ ( ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ) ) |
113 |
103
|
biimpi |
⊢ ( 𝑧 = ( 𝑃 ‘ 2 ) → ( 𝑃 ‘ 2 ) = 𝑧 ) |
114 |
113
|
adantl |
⊢ ( ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) → ( 𝑃 ‘ 2 ) = 𝑧 ) |
115 |
110 114
|
preq12d |
⊢ ( ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) → { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } = { 𝑦 , 𝑧 } ) |
116 |
115
|
eqeq2d |
⊢ ( ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) |
117 |
112 116
|
anbi12d |
⊢ ( ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ↔ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) |
118 |
117
|
biimpa |
⊢ ( ( ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) |
119 |
106 118
|
jca |
⊢ ( ( ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) → ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) |
120 |
119
|
exp41 |
⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → ( 𝑦 = ( 𝑃 ‘ 1 ) → ( 𝑧 = ( 𝑃 ‘ 2 ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
121 |
120
|
adantl |
⊢ ( ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ∧ 𝑥 = ( 𝑃 ‘ 0 ) ) → ( 𝑦 = ( 𝑃 ‘ 1 ) → ( 𝑧 = ( 𝑃 ‘ 2 ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
122 |
121
|
imp31 |
⊢ ( ( ( ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ∧ 𝑥 = ( 𝑃 ‘ 0 ) ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) |
123 |
100 122
|
rspcimedv |
⊢ ( ( ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ∧ 𝑥 = ( 𝑃 ‘ 0 ) ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) |
124 |
38 123
|
rspcimedv |
⊢ ( ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ∧ 𝑥 = ( 𝑃 ‘ 0 ) ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) |
125 |
10 124
|
rspcimedv |
⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) |
126 |
125
|
exp41 |
⊢ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝐺 ∈ USGraph → ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) ) |
127 |
126
|
com15 |
⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝐺 ∈ USGraph → ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) ) |
128 |
127
|
pm2.43i |
⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝐺 ∈ USGraph → ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
129 |
128
|
com12 |
⊢ ( 𝐺 ∈ USGraph → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
130 |
129
|
adantr |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
131 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 2 ) ) |
132 |
131
|
raleqdv |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ∀ 𝑖 ∈ ( 0 ..^ 2 ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
133 |
|
fzo0to2pr |
⊢ ( 0 ..^ 2 ) = { 0 , 1 } |
134 |
133
|
raleqi |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ 2 ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ∀ 𝑖 ∈ { 0 , 1 } ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) |
135 |
|
2wlklem |
⊢ ( ∀ 𝑖 ∈ { 0 , 1 } ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
136 |
134 135
|
bitri |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ 2 ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
137 |
132 136
|
bitrdi |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ) |
138 |
137
|
adantl |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ) |
139 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ... 2 ) ) |
140 |
139
|
feq2d |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ↔ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ) |
141 |
140
|
adantl |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ↔ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ) |
142 |
|
f1eq2 |
⊢ ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 2 ) → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ↔ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) |
143 |
131 142
|
syl |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ↔ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) |
144 |
143
|
imbi1d |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ↔ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) |
145 |
144
|
adantl |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ↔ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) |
146 |
141 145
|
imbi12d |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ↔ ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
147 |
130 138 146
|
3imtr4d |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
148 |
147
|
com14 |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
149 |
148
|
com23 |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
150 |
149
|
3imp |
⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) |