Step |
Hyp |
Ref |
Expression |
1 |
|
usgrupgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UPGraph ) |
2 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
4 |
2 3
|
upgriswlk |
⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) ) |
5 |
1 4
|
syl |
⊢ ( 𝐺 ∈ USGraph → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) ) |
6 |
|
2wlklem |
⊢ ( ∀ 𝑘 ∈ { 0 , 1 } ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ↔ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
7 |
|
simplll |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) ) → 𝐺 ∈ USGraph ) |
8 |
|
fvex |
⊢ ( 𝑃 ‘ 0 ) ∈ V |
9 |
3
|
usgrnloopv |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝑃 ‘ 0 ) ∈ V ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
10 |
7 8 9
|
sylancl |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
11 |
|
fvex |
⊢ ( 𝑃 ‘ 1 ) ∈ V |
12 |
3
|
usgrnloopv |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝑃 ‘ 1 ) ∈ V ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
13 |
7 11 12
|
sylancl |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
14 |
10 13
|
anim12d |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
15 |
|
fveqeq2 |
⊢ ( ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 1 ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) |
16 |
|
eqtr2 |
⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
17 |
|
prcom |
⊢ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } |
18 |
17
|
eqeq2i |
⊢ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ↔ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } ) |
19 |
|
fvex |
⊢ ( 𝑃 ‘ 2 ) ∈ V |
20 |
8 19
|
preqr1 |
⊢ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 2 ) ) |
21 |
18 20
|
sylbi |
⊢ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 2 ) ) |
22 |
16 21
|
syl |
⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 2 ) ) |
23 |
22
|
ex |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 2 ) ) ) |
24 |
15 23
|
syl6bi |
⊢ ( ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 1 ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 2 ) ) ) ) |
25 |
24
|
impd |
⊢ ( ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 1 ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 2 ) ) ) |
26 |
25
|
com12 |
⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 1 ) → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 2 ) ) ) |
27 |
26
|
necon3d |
⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) → ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) |
28 |
27
|
com12 |
⊢ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) |
29 |
28
|
adantr |
⊢ ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) |
30 |
|
simpl |
⊢ ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) |
31 |
30
|
adantl |
⊢ ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) |
32 |
|
simpl |
⊢ ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) |
33 |
|
simprr |
⊢ ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) |
34 |
31 32 33
|
3jca |
⊢ ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
35 |
29 34
|
jctild |
⊢ ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) |
36 |
35
|
ex |
⊢ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) |
37 |
36
|
com23 |
⊢ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) |
38 |
37
|
adantl |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) |
39 |
38
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) |
40 |
14 39
|
mpdd |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) |
41 |
6 40
|
syl5bi |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( ∀ 𝑘 ∈ { 0 , 1 } ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) |
42 |
41
|
ex |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) → ( 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) → ( ∀ 𝑘 ∈ { 0 , 1 } ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) |
43 |
42
|
com23 |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) → ( ∀ 𝑘 ∈ { 0 , 1 } ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) |
44 |
43
|
ex |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) → ( ∀ 𝑘 ∈ { 0 , 1 } ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) ) |
45 |
|
fveq2 |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑃 ‘ 2 ) ) |
46 |
45
|
neeq2d |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
47 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 2 ) ) |
48 |
|
fzo0to2pr |
⊢ ( 0 ..^ 2 ) = { 0 , 1 } |
49 |
47 48
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = { 0 , 1 } ) |
50 |
49
|
raleqdv |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ↔ ∀ 𝑘 ∈ { 0 , 1 } ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) |
51 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ... 2 ) ) |
52 |
51
|
feq2d |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ↔ 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) ) ) |
53 |
52
|
imbi1d |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ↔ ( 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) |
54 |
50 53
|
imbi12d |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ↔ ( ∀ 𝑘 ∈ { 0 , 1 } ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) ) |
55 |
46 54
|
imbi12d |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) ↔ ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) → ( ∀ 𝑘 ∈ { 0 , 1 } ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( 𝑃 : ( 0 ... 2 ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) ) ) |
56 |
44 55
|
syl5ibrcom |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) → ( ( ♯ ‘ 𝐹 ) = 2 → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) ) ) |
57 |
56
|
impd |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) → ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) ) |
58 |
57
|
com24 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) ) |
59 |
58
|
ex |
⊢ ( 𝐺 ∈ USGraph → ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) ) ) |
60 |
59
|
3impd |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) → ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) |
61 |
5 60
|
sylbid |
⊢ ( 𝐺 ∈ USGraph → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) ) ) |
62 |
61
|
imp31 |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) ∧ ( ( ♯ ‘ 𝐹 ) = 2 ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ∧ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ∧ ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 1 ) ) ) |