| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl31 | ⊢ ( ( ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) )  ∧  ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  𝐴  ≠  𝐵 ) )  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | 
						
							| 2 |  | simp2 | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 )  →  ( 𝑃 ‘ 0 )  =  𝐴 ) | 
						
							| 3 |  | simp3 | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 )  →  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) | 
						
							| 4 | 2 3 | neeq12d | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 )  →  ( ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  ↔  𝐴  ≠  𝐵 ) ) | 
						
							| 5 | 4 | bicomd | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 )  →  ( 𝐴  ≠  𝐵  ↔  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 6 | 5 | 3anbi3d | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 )  →  ( ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  𝐴  ≠  𝐵 )  ↔  ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 7 |  | usgr2wlkspthlem1 | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) )  →  Fun  ◡ 𝐹 ) | 
						
							| 8 | 7 | ex | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  →  Fun  ◡ 𝐹 ) ) | 
						
							| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 )  →  ( ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  →  Fun  ◡ 𝐹 ) ) | 
						
							| 10 | 6 9 | sylbid | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 )  →  ( ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  𝐴  ≠  𝐵 )  →  Fun  ◡ 𝐹 ) ) | 
						
							| 11 | 10 | 3ad2ant3 | ⊢ ( ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) )  →  ( ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  𝐴  ≠  𝐵 )  →  Fun  ◡ 𝐹 ) ) | 
						
							| 12 | 11 | imp | ⊢ ( ( ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) )  ∧  ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  𝐴  ≠  𝐵 ) )  →  Fun  ◡ 𝐹 ) | 
						
							| 13 |  | istrl | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ↔  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝐹 ) ) | 
						
							| 14 | 1 12 13 | sylanbrc | ⊢ ( ( ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) )  ∧  ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  𝐴  ≠  𝐵 ) )  →  𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | 
						
							| 15 |  | usgr2wlkspthlem2 | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) )  →  Fun  ◡ 𝑃 ) | 
						
							| 16 | 15 | ex | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  →  Fun  ◡ 𝑃 ) ) | 
						
							| 17 | 16 | 3ad2ant1 | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 )  →  ( ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  →  Fun  ◡ 𝑃 ) ) | 
						
							| 18 | 6 17 | sylbid | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 )  →  ( ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  𝐴  ≠  𝐵 )  →  Fun  ◡ 𝑃 ) ) | 
						
							| 19 | 18 | 3ad2ant3 | ⊢ ( ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) )  →  ( ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  𝐴  ≠  𝐵 )  →  Fun  ◡ 𝑃 ) ) | 
						
							| 20 | 19 | imp | ⊢ ( ( ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) )  ∧  ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  𝐴  ≠  𝐵 ) )  →  Fun  ◡ 𝑃 ) | 
						
							| 21 |  | isspth | ⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃  ↔  ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝑃 ) ) | 
						
							| 22 | 14 20 21 | sylanbrc | ⊢ ( ( ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) )  ∧  ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  𝐴  ≠  𝐵 ) )  →  𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) | 
						
							| 23 |  | 3simpc | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 )  →  ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) ) | 
						
							| 24 | 23 | 3ad2ant3 | ⊢ ( ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) )  →  ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) )  ∧  ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  𝐴  ≠  𝐵 ) )  →  ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) ) | 
						
							| 26 |  | 3anass | ⊢ ( ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 )  ↔  ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃  ∧  ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) ) ) | 
						
							| 27 | 22 25 26 | sylanbrc | ⊢ ( ( ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) )  ∧  ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  𝐴  ≠  𝐵 ) )  →  ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) ) | 
						
							| 28 |  | 3simpa | ⊢ ( ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) )  →  ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) )  ∧  ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  𝐴  ≠  𝐵 ) )  →  ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) ) ) | 
						
							| 30 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 31 | 30 | isspthonpth | ⊢ ( ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) )  →  ( 𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃  ↔  ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) ) ) | 
						
							| 32 | 29 31 | syl | ⊢ ( ( ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) )  ∧  ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  𝐴  ≠  𝐵 ) )  →  ( 𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃  ↔  ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) ) ) | 
						
							| 33 | 27 32 | mpbird | ⊢ ( ( ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) )  ∧  ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  𝐴  ≠  𝐵 ) )  →  𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) | 
						
							| 34 | 33 | ex | ⊢ ( ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) )  →  ( ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  𝐴  ≠  𝐵 )  →  𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) ) | 
						
							| 35 | 30 | wlkonprop | ⊢ ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃  →  ( ( 𝐺  ∈  V  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) ) ) | 
						
							| 36 |  | 3simpc | ⊢ ( ( 𝐺  ∈  V  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 37 | 36 | 3anim1i | ⊢ ( ( ( 𝐺  ∈  V  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) )  →  ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) ) ) | 
						
							| 38 | 35 37 | syl | ⊢ ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃  →  ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  𝐵 ) ) ) | 
						
							| 39 | 34 38 | syl11 | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  𝐴  ≠  𝐵 )  →  ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃  →  𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) ) | 
						
							| 40 |  | spthonpthon | ⊢ ( 𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃  →  𝐹 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) | 
						
							| 41 |  | pthontrlon | ⊢ ( 𝐹 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑃  →  𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) | 
						
							| 42 |  | trlsonwlkon | ⊢ ( 𝐹 ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) 𝑃  →  𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) | 
						
							| 43 | 40 41 42 | 3syl | ⊢ ( 𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃  →  𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) | 
						
							| 44 | 39 43 | impbid1 | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( ♯ ‘ 𝐹 )  =  2  ∧  𝐴  ≠  𝐵 )  →  ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑃  ↔  𝐹 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑃 ) ) |