Step |
Hyp |
Ref |
Expression |
1 |
|
usgr2wspthon0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
usgr2wspthon0.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
usgrupgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UPGraph ) |
4 |
3
|
adantr |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐺 ∈ UPGraph ) |
5 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) |
6 |
5
|
adantl |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐴 ∈ 𝑉 ) |
7 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 𝐶 ∈ 𝑉 ) |
8 |
7
|
adantl |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐶 ∈ 𝑉 ) |
9 |
1
|
elwspths2on |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝑇 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ↔ ∃ 𝑏 ∈ 𝑉 ( 𝑇 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) ) ) |
10 |
4 6 8 9
|
syl3anc |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝑇 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ↔ ∃ 𝑏 ∈ 𝑉 ( 𝑇 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) ) ) |
11 |
|
simpl |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐺 ∈ USGraph ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ 𝑏 ∈ 𝑉 ) → 𝐺 ∈ USGraph ) |
13 |
|
simplrl |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ 𝑏 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) |
14 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ 𝑏 ∈ 𝑉 ) → 𝑏 ∈ 𝑉 ) |
15 |
|
simplrr |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ 𝑏 ∈ 𝑉 ) → 𝐶 ∈ 𝑉 ) |
16 |
1 2
|
usgr2wspthons3 |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ↔ ( 𝐴 ≠ 𝐶 ∧ { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) ) |
17 |
12 13 14 15 16
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ 𝑏 ∈ 𝑉 ) → ( 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ↔ ( 𝐴 ≠ 𝐶 ∧ { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) ) |
18 |
17
|
anbi2d |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝑇 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) ↔ ( 𝑇 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ ( 𝐴 ≠ 𝐶 ∧ { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) ) ) |
19 |
|
anass |
⊢ ( ( ( 𝑇 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 𝐴 ≠ 𝐶 ) ∧ ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) ↔ ( 𝑇 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ ( 𝐴 ≠ 𝐶 ∧ ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) ) ) |
20 |
|
3anass |
⊢ ( ( 𝐴 ≠ 𝐶 ∧ { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ↔ ( 𝐴 ≠ 𝐶 ∧ ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) ) |
21 |
20
|
bicomi |
⊢ ( ( 𝐴 ≠ 𝐶 ∧ ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) ↔ ( 𝐴 ≠ 𝐶 ∧ { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) |
22 |
21
|
anbi2i |
⊢ ( ( 𝑇 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ ( 𝐴 ≠ 𝐶 ∧ ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) ) ↔ ( 𝑇 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ ( 𝐴 ≠ 𝐶 ∧ { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) ) |
23 |
19 22
|
bitri |
⊢ ( ( ( 𝑇 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 𝐴 ≠ 𝐶 ) ∧ ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) ↔ ( 𝑇 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ ( 𝐴 ≠ 𝐶 ∧ { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) ) |
24 |
18 23
|
bitr4di |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝑇 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) ↔ ( ( 𝑇 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 𝐴 ≠ 𝐶 ) ∧ ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) ) ) |
25 |
24
|
rexbidva |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ∃ 𝑏 ∈ 𝑉 ( 𝑇 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 〈“ 𝐴 𝑏 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) ↔ ∃ 𝑏 ∈ 𝑉 ( ( 𝑇 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 𝐴 ≠ 𝐶 ) ∧ ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) ) ) |
26 |
10 25
|
bitrd |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝑇 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ↔ ∃ 𝑏 ∈ 𝑉 ( ( 𝑇 = 〈“ 𝐴 𝑏 𝐶 ”〉 ∧ 𝐴 ≠ 𝐶 ) ∧ ( { 𝐴 , 𝑏 } ∈ 𝐸 ∧ { 𝑏 , 𝐶 } ∈ 𝐸 ) ) ) ) |