Step |
Hyp |
Ref |
Expression |
1 |
|
usgr2wspthon0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
usgr2wspthon0.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
2nn |
⊢ 2 ∈ ℕ |
4 |
|
ne0i |
⊢ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) → ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ≠ ∅ ) |
5 |
|
wspthsnonn0vne |
⊢ ( ( 2 ∈ ℕ ∧ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ≠ ∅ ) → 𝐴 ≠ 𝐶 ) |
6 |
3 4 5
|
sylancr |
⊢ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) → 𝐴 ≠ 𝐶 ) |
7 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶 ) ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) → 𝐴 ≠ 𝐶 ) |
8 |
|
wpthswwlks2on |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶 ) → ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) = ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ) |
9 |
8
|
eleq2d |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶 ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ↔ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ) ) |
10 |
9
|
biimpa |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶 ) ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ) |
11 |
7 10
|
jca |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶 ) ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) → ( 𝐴 ≠ 𝐶 ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ) ) |
12 |
11
|
exp31 |
⊢ ( 𝐺 ∈ USGraph → ( 𝐴 ≠ 𝐶 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) → ( 𝐴 ≠ 𝐶 ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ) ) ) ) |
13 |
12
|
com13 |
⊢ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) → ( 𝐴 ≠ 𝐶 → ( 𝐺 ∈ USGraph → ( 𝐴 ≠ 𝐶 ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ) ) ) ) |
14 |
6 13
|
mpd |
⊢ ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) → ( 𝐺 ∈ USGraph → ( 𝐴 ≠ 𝐶 ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ) ) ) |
15 |
14
|
com12 |
⊢ ( 𝐺 ∈ USGraph → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) → ( 𝐴 ≠ 𝐶 ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ) ) ) |
16 |
9
|
biimprd |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐴 ≠ 𝐶 ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) ) |
17 |
16
|
expimpd |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝐴 ≠ 𝐶 ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ) ) |
18 |
15 17
|
impbid |
⊢ ( 𝐺 ∈ USGraph → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ↔ ( 𝐴 ≠ 𝐶 ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ) ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ↔ ( 𝐴 ≠ 𝐶 ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ) ) ) |
20 |
|
usgrumgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph ) |
21 |
1 2
|
umgrwwlks2on |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) ) |
22 |
20 21
|
sylan |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) ) |
23 |
22
|
anbi2d |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 ≠ 𝐶 ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ) ↔ ( 𝐴 ≠ 𝐶 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) ) ) |
24 |
|
3anass |
⊢ ( ( 𝐴 ≠ 𝐶 ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ↔ ( 𝐴 ≠ 𝐶 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) ) |
25 |
23 24
|
bitr4di |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 ≠ 𝐶 ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WWalksNOn 𝐺 ) 𝐶 ) ) ↔ ( 𝐴 ≠ 𝐶 ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) ) |
26 |
19 25
|
bitrd |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( 𝐴 ( 2 WSPathsNOn 𝐺 ) 𝐶 ) ↔ ( 𝐴 ≠ 𝐶 ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) ) |