Step |
Hyp |
Ref |
Expression |
1 |
|
ausgr.1 |
⊢ 𝐺 = { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 ⊆ { 𝑥 ∈ 𝒫 𝑣 ∣ ( ♯ ‘ 𝑥 ) = 2 } } |
2 |
|
ausgrusgri.1 |
⊢ 𝑂 = { 𝑓 ∣ 𝑓 : dom 𝑓 –1-1→ ran 𝑓 } |
3 |
1 2
|
ausgrusgri |
⊢ ( ( 𝐻 ∈ 𝑊 ∧ ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐻 ) ∈ 𝑂 ) → 𝐻 ∈ USGraph ) |
4 |
3
|
3exp |
⊢ ( 𝐻 ∈ 𝑊 → ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) → ( ( iEdg ‘ 𝐻 ) ∈ 𝑂 → 𝐻 ∈ USGraph ) ) ) |
5 |
4
|
com23 |
⊢ ( 𝐻 ∈ 𝑊 → ( ( iEdg ‘ 𝐻 ) ∈ 𝑂 → ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) → 𝐻 ∈ USGraph ) ) ) |
6 |
5
|
imp |
⊢ ( ( 𝐻 ∈ 𝑊 ∧ ( iEdg ‘ 𝐻 ) ∈ 𝑂 ) → ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) → 𝐻 ∈ USGraph ) ) |
7 |
1
|
usgrausgri |
⊢ ( 𝐻 ∈ USGraph → ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ) |
8 |
6 7
|
impbid1 |
⊢ ( ( 𝐻 ∈ 𝑊 ∧ ( iEdg ‘ 𝐻 ) ∈ 𝑂 ) → ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ↔ 𝐻 ∈ USGraph ) ) |