Step |
Hyp |
Ref |
Expression |
1 |
|
usgredg2.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
3 |
2 1
|
usgrf |
⊢ ( 𝐺 ∈ USGraph → 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
4 |
|
f1f |
⊢ ( 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } → 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
5 |
3 4
|
syl |
⊢ ( 𝐺 ∈ USGraph → 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
6 |
5
|
ffvelrnda |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑋 ) ∈ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
7 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐸 ‘ 𝑋 ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑥 = ( 𝐸 ‘ 𝑋 ) → ( ( ♯ ‘ 𝑥 ) = 2 ↔ ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) ) |
9 |
8
|
elrab |
⊢ ( ( 𝐸 ‘ 𝑋 ) ∈ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( ( 𝐸 ‘ 𝑋 ) ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) ) |
10 |
9
|
simprbi |
⊢ ( ( 𝐸 ‘ 𝑋 ) ∈ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) |
11 |
6 10
|
syl |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) |