Step |
Hyp |
Ref |
Expression |
1 |
|
usgredg2v.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
usgredg2v.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
3 |
|
usgredg2v.a |
⊢ 𝐴 = { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } |
4 |
|
usgredg2v.f |
⊢ 𝐹 = ( 𝑦 ∈ 𝐴 ↦ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) ) |
5 |
1 2 3
|
usgredg2vlem1 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑦 ∈ 𝐴 ) → ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ) |
6 |
5
|
ralrimiva |
⊢ ( 𝐺 ∈ USGraph → ∀ 𝑦 ∈ 𝐴 ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ) |
7 |
6
|
adantr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ∀ 𝑦 ∈ 𝐴 ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ) |
8 |
2
|
usgrf1 |
⊢ ( 𝐺 ∈ USGraph → 𝐸 : dom 𝐸 –1-1→ ran 𝐸 ) |
9 |
8
|
adantr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐸 : dom 𝐸 –1-1→ ran 𝐸 ) |
10 |
|
elrabi |
⊢ ( 𝑦 ∈ { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } → 𝑦 ∈ dom 𝐸 ) |
11 |
10 3
|
eleq2s |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ dom 𝐸 ) |
12 |
|
elrabi |
⊢ ( 𝑤 ∈ { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } → 𝑤 ∈ dom 𝐸 ) |
13 |
12 3
|
eleq2s |
⊢ ( 𝑤 ∈ 𝐴 → 𝑤 ∈ dom 𝐸 ) |
14 |
11 13
|
anim12i |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑦 ∈ dom 𝐸 ∧ 𝑤 ∈ dom 𝐸 ) ) |
15 |
|
f1fveq |
⊢ ( ( 𝐸 : dom 𝐸 –1-1→ ran 𝐸 ∧ ( 𝑦 ∈ dom 𝐸 ∧ 𝑤 ∈ dom 𝐸 ) ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑤 ) ↔ 𝑦 = 𝑤 ) ) |
16 |
9 14 15
|
syl2an |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑤 ) ↔ 𝑦 = 𝑤 ) ) |
17 |
16
|
bicomd |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑦 = 𝑤 ↔ ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑤 ) ) ) |
18 |
17
|
notbid |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ¬ 𝑦 = 𝑤 ↔ ¬ ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑤 ) ) ) |
19 |
|
simpl |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐺 ∈ USGraph ) |
20 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
21 |
19 20
|
anim12i |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝐺 ∈ USGraph ∧ 𝑦 ∈ 𝐴 ) ) |
22 |
|
preq1 |
⊢ ( 𝑢 = 𝑧 → { 𝑢 , 𝑁 } = { 𝑧 , 𝑁 } ) |
23 |
22
|
eqeq2d |
⊢ ( 𝑢 = 𝑧 → ( ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ↔ ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) ) |
24 |
23
|
cbvriotavw |
⊢ ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) |
25 |
1 2 3
|
usgredg2vlem2 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑦 ∈ 𝐴 ) → ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) → ( 𝐸 ‘ 𝑦 ) = { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ) ) |
26 |
21 24 25
|
mpisyl |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝐸 ‘ 𝑦 ) = { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ) |
27 |
|
an3 |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝐺 ∈ USGraph ∧ 𝑤 ∈ 𝐴 ) ) |
28 |
22
|
eqeq2d |
⊢ ( 𝑢 = 𝑧 → ( ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ↔ ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) |
29 |
28
|
cbvriotavw |
⊢ ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) |
30 |
1 2 3
|
usgredg2vlem2 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑤 ∈ 𝐴 ) → ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) → ( 𝐸 ‘ 𝑤 ) = { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ) ) |
31 |
27 29 30
|
mpisyl |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝐸 ‘ 𝑤 ) = { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ) |
32 |
26 31
|
eqeq12d |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑤 ) ↔ { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } = { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ) ) |
33 |
32
|
notbid |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ¬ ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑤 ) ↔ ¬ { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } = { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ) ) |
34 |
|
riotaex |
⊢ ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) ∈ V |
35 |
34
|
a1i |
⊢ ( 𝑁 ∈ 𝑉 → ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) ∈ V ) |
36 |
|
id |
⊢ ( 𝑁 ∈ 𝑉 → 𝑁 ∈ 𝑉 ) |
37 |
|
riotaex |
⊢ ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∈ V |
38 |
37
|
a1i |
⊢ ( 𝑁 ∈ 𝑉 → ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∈ V ) |
39 |
|
preq12bg |
⊢ ( ( ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) ∈ V ∧ 𝑁 ∈ 𝑉 ) ∧ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∈ V ∧ 𝑁 ∈ 𝑉 ) ) → ( { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } = { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ↔ ( ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∨ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁 ∧ 𝑁 = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ) ) ) ) |
40 |
35 36 38 36 39
|
syl22anc |
⊢ ( 𝑁 ∈ 𝑉 → ( { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } = { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ↔ ( ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∨ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁 ∧ 𝑁 = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ) ) ) ) |
41 |
40
|
notbid |
⊢ ( 𝑁 ∈ 𝑉 → ( ¬ { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } = { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ↔ ¬ ( ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∨ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁 ∧ 𝑁 = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ) ) ) ) |
42 |
41
|
adantl |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( ¬ { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } = { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ↔ ¬ ( ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∨ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁 ∧ 𝑁 = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ) ) ) ) |
43 |
|
ioran |
⊢ ( ¬ ( ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∨ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁 ∧ 𝑁 = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ) ) ↔ ( ¬ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∧ ¬ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁 ∧ 𝑁 = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ) ) ) |
44 |
|
ianor |
⊢ ( ¬ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ↔ ( ¬ ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∨ ¬ 𝑁 = 𝑁 ) ) |
45 |
24 29
|
eqeq12i |
⊢ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ↔ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) |
46 |
45
|
notbii |
⊢ ( ¬ ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ↔ ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) |
47 |
46
|
biimpi |
⊢ ( ¬ ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) |
48 |
47
|
a1d |
⊢ ( ¬ ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) → ( 𝐺 ∈ USGraph → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) ) |
49 |
|
eqid |
⊢ 𝑁 = 𝑁 |
50 |
49
|
pm2.24i |
⊢ ( ¬ 𝑁 = 𝑁 → ( 𝐺 ∈ USGraph → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) ) |
51 |
48 50
|
jaoi |
⊢ ( ( ¬ ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∨ ¬ 𝑁 = 𝑁 ) → ( 𝐺 ∈ USGraph → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) ) |
52 |
44 51
|
sylbi |
⊢ ( ¬ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) → ( 𝐺 ∈ USGraph → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) ) |
53 |
52
|
adantr |
⊢ ( ( ¬ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∧ ¬ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁 ∧ 𝑁 = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ) ) → ( 𝐺 ∈ USGraph → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) ) |
54 |
43 53
|
sylbi |
⊢ ( ¬ ( ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∨ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁 ∧ 𝑁 = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ) ) → ( 𝐺 ∈ USGraph → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) ) |
55 |
54
|
com12 |
⊢ ( 𝐺 ∈ USGraph → ( ¬ ( ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∨ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁 ∧ 𝑁 = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ) ) → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) ) |
56 |
55
|
adantr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( ¬ ( ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∨ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁 ∧ 𝑁 = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ) ) → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) ) |
57 |
42 56
|
sylbid |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( ¬ { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } = { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) ) |
58 |
57
|
adantr |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ¬ { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } = { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) ) |
59 |
33 58
|
sylbid |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ¬ ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑤 ) → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) ) |
60 |
18 59
|
sylbid |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ¬ 𝑦 = 𝑤 → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) ) |
61 |
60
|
con4d |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) → 𝑦 = 𝑤 ) ) |
62 |
61
|
ralrimivva |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ∀ 𝑦 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) → 𝑦 = 𝑤 ) ) |
63 |
|
fveqeq2 |
⊢ ( 𝑦 = 𝑤 → ( ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ↔ ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) |
64 |
63
|
riotabidv |
⊢ ( 𝑦 = 𝑤 → ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) |
65 |
4 64
|
f1mpt |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝑉 ↔ ( ∀ 𝑦 ∈ 𝐴 ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) → 𝑦 = 𝑤 ) ) ) |
66 |
7 62 65
|
sylanbrc |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 : 𝐴 –1-1→ 𝑉 ) |