Metamath Proof Explorer


Theorem usgredg2v

Description: In a simple graph, the mapping of edges having a fixed endpoint to the other vertex of the edge is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 18-Oct-2020)

Ref Expression
Hypotheses usgredg2v.v 𝑉 = ( Vtx ‘ 𝐺 )
usgredg2v.e 𝐸 = ( iEdg ‘ 𝐺 )
usgredg2v.a 𝐴 = { 𝑥 ∈ dom 𝐸𝑁 ∈ ( 𝐸𝑥 ) }
usgredg2v.f 𝐹 = ( 𝑦𝐴 ↦ ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) )
Assertion usgredg2v ( ( 𝐺 ∈ USGraph ∧ 𝑁𝑉 ) → 𝐹 : 𝐴1-1𝑉 )

Proof

Step Hyp Ref Expression
1 usgredg2v.v 𝑉 = ( Vtx ‘ 𝐺 )
2 usgredg2v.e 𝐸 = ( iEdg ‘ 𝐺 )
3 usgredg2v.a 𝐴 = { 𝑥 ∈ dom 𝐸𝑁 ∈ ( 𝐸𝑥 ) }
4 usgredg2v.f 𝐹 = ( 𝑦𝐴 ↦ ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) )
5 1 2 3 usgredg2vlem1 ( ( 𝐺 ∈ USGraph ∧ 𝑦𝐴 ) → ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 )
6 5 ralrimiva ( 𝐺 ∈ USGraph → ∀ 𝑦𝐴 ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 )
7 6 adantr ( ( 𝐺 ∈ USGraph ∧ 𝑁𝑉 ) → ∀ 𝑦𝐴 ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 )
8 2 usgrf1 ( 𝐺 ∈ USGraph → 𝐸 : dom 𝐸1-1→ ran 𝐸 )
9 8 adantr ( ( 𝐺 ∈ USGraph ∧ 𝑁𝑉 ) → 𝐸 : dom 𝐸1-1→ ran 𝐸 )
10 elrabi ( 𝑦 ∈ { 𝑥 ∈ dom 𝐸𝑁 ∈ ( 𝐸𝑥 ) } → 𝑦 ∈ dom 𝐸 )
11 10 3 eleq2s ( 𝑦𝐴𝑦 ∈ dom 𝐸 )
12 elrabi ( 𝑤 ∈ { 𝑥 ∈ dom 𝐸𝑁 ∈ ( 𝐸𝑥 ) } → 𝑤 ∈ dom 𝐸 )
13 12 3 eleq2s ( 𝑤𝐴𝑤 ∈ dom 𝐸 )
14 11 13 anim12i ( ( 𝑦𝐴𝑤𝐴 ) → ( 𝑦 ∈ dom 𝐸𝑤 ∈ dom 𝐸 ) )
15 f1fveq ( ( 𝐸 : dom 𝐸1-1→ ran 𝐸 ∧ ( 𝑦 ∈ dom 𝐸𝑤 ∈ dom 𝐸 ) ) → ( ( 𝐸𝑦 ) = ( 𝐸𝑤 ) ↔ 𝑦 = 𝑤 ) )
16 9 14 15 syl2an ( ( ( 𝐺 ∈ USGraph ∧ 𝑁𝑉 ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) → ( ( 𝐸𝑦 ) = ( 𝐸𝑤 ) ↔ 𝑦 = 𝑤 ) )
17 16 bicomd ( ( ( 𝐺 ∈ USGraph ∧ 𝑁𝑉 ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) → ( 𝑦 = 𝑤 ↔ ( 𝐸𝑦 ) = ( 𝐸𝑤 ) ) )
18 17 notbid ( ( ( 𝐺 ∈ USGraph ∧ 𝑁𝑉 ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) → ( ¬ 𝑦 = 𝑤 ↔ ¬ ( 𝐸𝑦 ) = ( 𝐸𝑤 ) ) )
19 simpl ( ( 𝐺 ∈ USGraph ∧ 𝑁𝑉 ) → 𝐺 ∈ USGraph )
20 simpl ( ( 𝑦𝐴𝑤𝐴 ) → 𝑦𝐴 )
21 19 20 anim12i ( ( ( 𝐺 ∈ USGraph ∧ 𝑁𝑉 ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) → ( 𝐺 ∈ USGraph ∧ 𝑦𝐴 ) )
22 preq1 ( 𝑢 = 𝑧 → { 𝑢 , 𝑁 } = { 𝑧 , 𝑁 } )
23 22 eqeq2d ( 𝑢 = 𝑧 → ( ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ↔ ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) )
24 23 cbvriotavw ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } )
25 1 2 3 usgredg2vlem2 ( ( 𝐺 ∈ USGraph ∧ 𝑦𝐴 ) → ( ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) → ( 𝐸𝑦 ) = { ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ) )
26 21 24 25 mpisyl ( ( ( 𝐺 ∈ USGraph ∧ 𝑁𝑉 ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) → ( 𝐸𝑦 ) = { ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } )
27 an3 ( ( ( 𝐺 ∈ USGraph ∧ 𝑁𝑉 ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) → ( 𝐺 ∈ USGraph ∧ 𝑤𝐴 ) )
28 22 eqeq2d ( 𝑢 = 𝑧 → ( ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ↔ ( 𝐸𝑤 ) = { 𝑧 , 𝑁 } ) )
29 28 cbvriotavw ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) = ( 𝑧𝑉 ( 𝐸𝑤 ) = { 𝑧 , 𝑁 } )
30 1 2 3 usgredg2vlem2 ( ( 𝐺 ∈ USGraph ∧ 𝑤𝐴 ) → ( ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) = ( 𝑧𝑉 ( 𝐸𝑤 ) = { 𝑧 , 𝑁 } ) → ( 𝐸𝑤 ) = { ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ) )
31 27 29 30 mpisyl ( ( ( 𝐺 ∈ USGraph ∧ 𝑁𝑉 ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) → ( 𝐸𝑤 ) = { ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } )
32 26 31 eqeq12d ( ( ( 𝐺 ∈ USGraph ∧ 𝑁𝑉 ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) → ( ( 𝐸𝑦 ) = ( 𝐸𝑤 ) ↔ { ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } = { ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ) )
33 32 notbid ( ( ( 𝐺 ∈ USGraph ∧ 𝑁𝑉 ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) → ( ¬ ( 𝐸𝑦 ) = ( 𝐸𝑤 ) ↔ ¬ { ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } = { ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ) )
34 riotaex ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) ∈ V
35 34 a1i ( 𝑁𝑉 → ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) ∈ V )
36 id ( 𝑁𝑉𝑁𝑉 )
37 riotaex ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ∈ V
38 37 a1i ( 𝑁𝑉 → ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ∈ V )
39 preq12bg ( ( ( ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) ∈ V ∧ 𝑁𝑉 ) ∧ ( ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ∈ V ∧ 𝑁𝑉 ) ) → ( { ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } = { ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ↔ ( ( ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∨ ( ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁𝑁 = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ) ) ) )
40 35 36 38 36 39 syl22anc ( 𝑁𝑉 → ( { ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } = { ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ↔ ( ( ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∨ ( ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁𝑁 = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ) ) ) )
41 40 notbid ( 𝑁𝑉 → ( ¬ { ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } = { ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ↔ ¬ ( ( ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∨ ( ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁𝑁 = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ) ) ) )
42 41 adantl ( ( 𝐺 ∈ USGraph ∧ 𝑁𝑉 ) → ( ¬ { ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } = { ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ↔ ¬ ( ( ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∨ ( ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁𝑁 = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ) ) ) )
43 ioran ( ¬ ( ( ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∨ ( ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁𝑁 = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ) ) ↔ ( ¬ ( ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∧ ¬ ( ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁𝑁 = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ) ) )
44 ianor ( ¬ ( ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ↔ ( ¬ ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ∨ ¬ 𝑁 = 𝑁 ) )
45 24 29 eqeq12i ( ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ↔ ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) = ( 𝑧𝑉 ( 𝐸𝑤 ) = { 𝑧 , 𝑁 } ) )
46 45 notbii ( ¬ ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ↔ ¬ ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) = ( 𝑧𝑉 ( 𝐸𝑤 ) = { 𝑧 , 𝑁 } ) )
47 46 biimpi ( ¬ ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) → ¬ ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) = ( 𝑧𝑉 ( 𝐸𝑤 ) = { 𝑧 , 𝑁 } ) )
48 47 a1d ( ¬ ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) → ( 𝐺 ∈ USGraph → ¬ ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) = ( 𝑧𝑉 ( 𝐸𝑤 ) = { 𝑧 , 𝑁 } ) ) )
49 eqid 𝑁 = 𝑁
50 49 pm2.24i ( ¬ 𝑁 = 𝑁 → ( 𝐺 ∈ USGraph → ¬ ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) = ( 𝑧𝑉 ( 𝐸𝑤 ) = { 𝑧 , 𝑁 } ) ) )
51 48 50 jaoi ( ( ¬ ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ∨ ¬ 𝑁 = 𝑁 ) → ( 𝐺 ∈ USGraph → ¬ ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) = ( 𝑧𝑉 ( 𝐸𝑤 ) = { 𝑧 , 𝑁 } ) ) )
52 44 51 sylbi ( ¬ ( ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) → ( 𝐺 ∈ USGraph → ¬ ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) = ( 𝑧𝑉 ( 𝐸𝑤 ) = { 𝑧 , 𝑁 } ) ) )
53 52 adantr ( ( ¬ ( ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∧ ¬ ( ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁𝑁 = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ) ) → ( 𝐺 ∈ USGraph → ¬ ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) = ( 𝑧𝑉 ( 𝐸𝑤 ) = { 𝑧 , 𝑁 } ) ) )
54 43 53 sylbi ( ¬ ( ( ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∨ ( ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁𝑁 = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ) ) → ( 𝐺 ∈ USGraph → ¬ ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) = ( 𝑧𝑉 ( 𝐸𝑤 ) = { 𝑧 , 𝑁 } ) ) )
55 54 com12 ( 𝐺 ∈ USGraph → ( ¬ ( ( ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∨ ( ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁𝑁 = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ) ) → ¬ ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) = ( 𝑧𝑉 ( 𝐸𝑤 ) = { 𝑧 , 𝑁 } ) ) )
56 55 adantr ( ( 𝐺 ∈ USGraph ∧ 𝑁𝑉 ) → ( ¬ ( ( ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∨ ( ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁𝑁 = ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) ) ) → ¬ ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) = ( 𝑧𝑉 ( 𝐸𝑤 ) = { 𝑧 , 𝑁 } ) ) )
57 42 56 sylbid ( ( 𝐺 ∈ USGraph ∧ 𝑁𝑉 ) → ( ¬ { ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } = { ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } → ¬ ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) = ( 𝑧𝑉 ( 𝐸𝑤 ) = { 𝑧 , 𝑁 } ) ) )
58 57 adantr ( ( ( 𝐺 ∈ USGraph ∧ 𝑁𝑉 ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) → ( ¬ { ( 𝑢𝑉 ( 𝐸𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } = { ( 𝑢𝑉 ( 𝐸𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } → ¬ ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) = ( 𝑧𝑉 ( 𝐸𝑤 ) = { 𝑧 , 𝑁 } ) ) )
59 33 58 sylbid ( ( ( 𝐺 ∈ USGraph ∧ 𝑁𝑉 ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) → ( ¬ ( 𝐸𝑦 ) = ( 𝐸𝑤 ) → ¬ ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) = ( 𝑧𝑉 ( 𝐸𝑤 ) = { 𝑧 , 𝑁 } ) ) )
60 18 59 sylbid ( ( ( 𝐺 ∈ USGraph ∧ 𝑁𝑉 ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) → ( ¬ 𝑦 = 𝑤 → ¬ ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) = ( 𝑧𝑉 ( 𝐸𝑤 ) = { 𝑧 , 𝑁 } ) ) )
61 60 con4d ( ( ( 𝐺 ∈ USGraph ∧ 𝑁𝑉 ) ∧ ( 𝑦𝐴𝑤𝐴 ) ) → ( ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) = ( 𝑧𝑉 ( 𝐸𝑤 ) = { 𝑧 , 𝑁 } ) → 𝑦 = 𝑤 ) )
62 61 ralrimivva ( ( 𝐺 ∈ USGraph ∧ 𝑁𝑉 ) → ∀ 𝑦𝐴𝑤𝐴 ( ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) = ( 𝑧𝑉 ( 𝐸𝑤 ) = { 𝑧 , 𝑁 } ) → 𝑦 = 𝑤 ) )
63 fveqeq2 ( 𝑦 = 𝑤 → ( ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ↔ ( 𝐸𝑤 ) = { 𝑧 , 𝑁 } ) )
64 63 riotabidv ( 𝑦 = 𝑤 → ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) = ( 𝑧𝑉 ( 𝐸𝑤 ) = { 𝑧 , 𝑁 } ) )
65 4 64 f1mpt ( 𝐹 : 𝐴1-1𝑉 ↔ ( ∀ 𝑦𝐴 ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ∧ ∀ 𝑦𝐴𝑤𝐴 ( ( 𝑧𝑉 ( 𝐸𝑦 ) = { 𝑧 , 𝑁 } ) = ( 𝑧𝑉 ( 𝐸𝑤 ) = { 𝑧 , 𝑁 } ) → 𝑦 = 𝑤 ) ) )
66 7 62 65 sylanbrc ( ( 𝐺 ∈ USGraph ∧ 𝑁𝑉 ) → 𝐹 : 𝐴1-1𝑉 )