Step |
Hyp |
Ref |
Expression |
1 |
|
usgredg2v.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
usgredg2v.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
3 |
|
usgredg2v.a |
⊢ 𝐴 = { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } |
4 |
|
fveq2 |
⊢ ( 𝑥 = 𝑌 → ( 𝐸 ‘ 𝑥 ) = ( 𝐸 ‘ 𝑌 ) ) |
5 |
4
|
eleq2d |
⊢ ( 𝑥 = 𝑌 → ( 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) ↔ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) |
6 |
5 3
|
elrab2 |
⊢ ( 𝑌 ∈ 𝐴 ↔ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) |
7 |
1 2
|
usgredgreu |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) → ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ) |
8 |
|
prcom |
⊢ { 𝑁 , 𝑧 } = { 𝑧 , 𝑁 } |
9 |
8
|
eqeq2i |
⊢ ( ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ↔ ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) |
10 |
9
|
reubii |
⊢ ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ↔ ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) |
11 |
7 10
|
sylib |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) → ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) |
12 |
11
|
3expb |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) → ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) |
13 |
|
riotacl |
⊢ ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } → ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ) |
14 |
12 13
|
syl |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) → ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ) |
15 |
6 14
|
sylan2b |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑌 ∈ 𝐴 ) → ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ) |