Metamath Proof Explorer


Theorem usgredg2vlem1

Description: Lemma 1 for usgredg2v . (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 18-Oct-2020)

Ref Expression
Hypotheses usgredg2v.v 𝑉 = ( Vtx ‘ 𝐺 )
usgredg2v.e 𝐸 = ( iEdg ‘ 𝐺 )
usgredg2v.a 𝐴 = { 𝑥 ∈ dom 𝐸𝑁 ∈ ( 𝐸𝑥 ) }
Assertion usgredg2vlem1 ( ( 𝐺 ∈ USGraph ∧ 𝑌𝐴 ) → ( 𝑧𝑉 ( 𝐸𝑌 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 )

Proof

Step Hyp Ref Expression
1 usgredg2v.v 𝑉 = ( Vtx ‘ 𝐺 )
2 usgredg2v.e 𝐸 = ( iEdg ‘ 𝐺 )
3 usgredg2v.a 𝐴 = { 𝑥 ∈ dom 𝐸𝑁 ∈ ( 𝐸𝑥 ) }
4 fveq2 ( 𝑥 = 𝑌 → ( 𝐸𝑥 ) = ( 𝐸𝑌 ) )
5 4 eleq2d ( 𝑥 = 𝑌 → ( 𝑁 ∈ ( 𝐸𝑥 ) ↔ 𝑁 ∈ ( 𝐸𝑌 ) ) )
6 5 3 elrab2 ( 𝑌𝐴 ↔ ( 𝑌 ∈ dom 𝐸𝑁 ∈ ( 𝐸𝑌 ) ) )
7 1 2 usgredgreu ( ( 𝐺 ∈ USGraph ∧ 𝑌 ∈ dom 𝐸𝑁 ∈ ( 𝐸𝑌 ) ) → ∃! 𝑧𝑉 ( 𝐸𝑌 ) = { 𝑁 , 𝑧 } )
8 prcom { 𝑁 , 𝑧 } = { 𝑧 , 𝑁 }
9 8 eqeq2i ( ( 𝐸𝑌 ) = { 𝑁 , 𝑧 } ↔ ( 𝐸𝑌 ) = { 𝑧 , 𝑁 } )
10 9 reubii ( ∃! 𝑧𝑉 ( 𝐸𝑌 ) = { 𝑁 , 𝑧 } ↔ ∃! 𝑧𝑉 ( 𝐸𝑌 ) = { 𝑧 , 𝑁 } )
11 7 10 sylib ( ( 𝐺 ∈ USGraph ∧ 𝑌 ∈ dom 𝐸𝑁 ∈ ( 𝐸𝑌 ) ) → ∃! 𝑧𝑉 ( 𝐸𝑌 ) = { 𝑧 , 𝑁 } )
12 11 3expb ( ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸𝑁 ∈ ( 𝐸𝑌 ) ) ) → ∃! 𝑧𝑉 ( 𝐸𝑌 ) = { 𝑧 , 𝑁 } )
13 riotacl ( ∃! 𝑧𝑉 ( 𝐸𝑌 ) = { 𝑧 , 𝑁 } → ( 𝑧𝑉 ( 𝐸𝑌 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 )
14 12 13 syl ( ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸𝑁 ∈ ( 𝐸𝑌 ) ) ) → ( 𝑧𝑉 ( 𝐸𝑌 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 )
15 6 14 sylan2b ( ( 𝐺 ∈ USGraph ∧ 𝑌𝐴 ) → ( 𝑧𝑉 ( 𝐸𝑌 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 )