| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							usgruhgr | 
							⊢ ( 𝐺  ∈  USGraph  →  𝐺  ∈  UHGraph )  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								2
							 | 
							uhgredgiedgb | 
							⊢ ( 𝐺  ∈  UHGraph  →  ( 𝐸  ∈  ( Edg ‘ 𝐺 )  ↔  ∃ 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) 𝐸  =  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							syl | 
							⊢ ( 𝐺  ∈  USGraph  →  ( 𝐸  ∈  ( Edg ‘ 𝐺 )  ↔  ∃ 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) 𝐸  =  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 6 | 
							
								5 2
							 | 
							usgredgreu | 
							⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∧  𝑌  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) )  →  ∃! 𝑦  ∈  ( Vtx ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { 𝑌 ,  𝑦 } )  | 
						
						
							| 7 | 
							
								6
							 | 
							3expia | 
							⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) )  →  ( 𝑌  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  →  ∃! 𝑦  ∈  ( Vtx ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { 𝑌 ,  𝑦 } ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							3adant3 | 
							⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∧  𝐸  =  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) )  →  ( 𝑌  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  →  ∃! 𝑦  ∈  ( Vtx ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { 𝑌 ,  𝑦 } ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eleq2 | 
							⊢ ( 𝐸  =  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  →  ( 𝑌  ∈  𝐸  ↔  𝑌  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝐸  =  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  →  ( 𝐸  =  { 𝑌 ,  𝑦 }  ↔  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { 𝑌 ,  𝑦 } ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							reubidv | 
							⊢ ( 𝐸  =  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  →  ( ∃! 𝑦  ∈  ( Vtx ‘ 𝐺 ) 𝐸  =  { 𝑌 ,  𝑦 }  ↔  ∃! 𝑦  ∈  ( Vtx ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { 𝑌 ,  𝑦 } ) )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							imbi12d | 
							⊢ ( 𝐸  =  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  →  ( ( 𝑌  ∈  𝐸  →  ∃! 𝑦  ∈  ( Vtx ‘ 𝐺 ) 𝐸  =  { 𝑌 ,  𝑦 } )  ↔  ( 𝑌  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  →  ∃! 𝑦  ∈  ( Vtx ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { 𝑌 ,  𝑦 } ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∧  𝐸  =  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) )  →  ( ( 𝑌  ∈  𝐸  →  ∃! 𝑦  ∈  ( Vtx ‘ 𝐺 ) 𝐸  =  { 𝑌 ,  𝑦 } )  ↔  ( 𝑌  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  →  ∃! 𝑦  ∈  ( Vtx ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { 𝑌 ,  𝑦 } ) ) )  | 
						
						
							| 14 | 
							
								8 13
							 | 
							mpbird | 
							⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∧  𝐸  =  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) )  →  ( 𝑌  ∈  𝐸  →  ∃! 𝑦  ∈  ( Vtx ‘ 𝐺 ) 𝐸  =  { 𝑌 ,  𝑦 } ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							3exp | 
							⊢ ( 𝐺  ∈  USGraph  →  ( 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  →  ( 𝐸  =  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  →  ( 𝑌  ∈  𝐸  →  ∃! 𝑦  ∈  ( Vtx ‘ 𝐺 ) 𝐸  =  { 𝑌 ,  𝑦 } ) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							rexlimdv | 
							⊢ ( 𝐺  ∈  USGraph  →  ( ∃ 𝑥  ∈  dom  ( iEdg ‘ 𝐺 ) 𝐸  =  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  →  ( 𝑌  ∈  𝐸  →  ∃! 𝑦  ∈  ( Vtx ‘ 𝐺 ) 𝐸  =  { 𝑌 ,  𝑦 } ) ) )  | 
						
						
							| 17 | 
							
								4 16
							 | 
							sylbid | 
							⊢ ( 𝐺  ∈  USGraph  →  ( 𝐸  ∈  ( Edg ‘ 𝐺 )  →  ( 𝑌  ∈  𝐸  →  ∃! 𝑦  ∈  ( Vtx ‘ 𝐺 ) 𝐸  =  { 𝑌 ,  𝑦 } ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							3imp | 
							⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐸  ∈  ( Edg ‘ 𝐺 )  ∧  𝑌  ∈  𝐸 )  →  ∃! 𝑦  ∈  ( Vtx ‘ 𝐺 ) 𝐸  =  { 𝑌 ,  𝑦 } )  |