Metamath Proof Explorer


Theorem usgredg3

Description: The value of the "edge function" of a simple graph is a set containing two elements (the endvertices of the corresponding edge). (Contributed by Alexander van der Vekens, 18-Dec-2017) (Revised by AV, 17-Oct-2020)

Ref Expression
Hypotheses usgredg3.v 𝑉 = ( Vtx ‘ 𝐺 )
usgredg3.e 𝐸 = ( iEdg ‘ 𝐺 )
Assertion usgredg3 ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ∃ 𝑥𝑉𝑦𝑉 ( 𝑥𝑦 ∧ ( 𝐸𝑋 ) = { 𝑥 , 𝑦 } ) )

Proof

Step Hyp Ref Expression
1 usgredg3.v 𝑉 = ( Vtx ‘ 𝐺 )
2 usgredg3.e 𝐸 = ( iEdg ‘ 𝐺 )
3 usgrfun ( 𝐺 ∈ USGraph → Fun ( iEdg ‘ 𝐺 ) )
4 2 funeqi ( Fun 𝐸 ↔ Fun ( iEdg ‘ 𝐺 ) )
5 3 4 sylibr ( 𝐺 ∈ USGraph → Fun 𝐸 )
6 fvelrn ( ( Fun 𝐸𝑋 ∈ dom 𝐸 ) → ( 𝐸𝑋 ) ∈ ran 𝐸 )
7 5 6 sylan ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( 𝐸𝑋 ) ∈ ran 𝐸 )
8 edgval ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 )
9 8 a1i ( 𝐺 ∈ USGraph → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) )
10 2 eqcomi ( iEdg ‘ 𝐺 ) = 𝐸
11 10 rneqi ran ( iEdg ‘ 𝐺 ) = ran 𝐸
12 9 11 eqtrdi ( 𝐺 ∈ USGraph → ( Edg ‘ 𝐺 ) = ran 𝐸 )
13 12 adantr ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( Edg ‘ 𝐺 ) = ran 𝐸 )
14 7 13 eleqtrrd ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( 𝐸𝑋 ) ∈ ( Edg ‘ 𝐺 ) )
15 eqid ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 )
16 1 15 usgredg ( ( 𝐺 ∈ USGraph ∧ ( 𝐸𝑋 ) ∈ ( Edg ‘ 𝐺 ) ) → ∃ 𝑥𝑉𝑦𝑉 ( 𝑥𝑦 ∧ ( 𝐸𝑋 ) = { 𝑥 , 𝑦 } ) )
17 14 16 syldan ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ∃ 𝑥𝑉𝑦𝑉 ( 𝑥𝑦 ∧ ( 𝐸𝑋 ) = { 𝑥 , 𝑦 } ) )