Step |
Hyp |
Ref |
Expression |
1 |
|
usgredg3.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
usgredg3.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
3 |
|
usgrfun |
⊢ ( 𝐺 ∈ USGraph → Fun ( iEdg ‘ 𝐺 ) ) |
4 |
2
|
funeqi |
⊢ ( Fun 𝐸 ↔ Fun ( iEdg ‘ 𝐺 ) ) |
5 |
3 4
|
sylibr |
⊢ ( 𝐺 ∈ USGraph → Fun 𝐸 ) |
6 |
|
fvelrn |
⊢ ( ( Fun 𝐸 ∧ 𝑋 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑋 ) ∈ ran 𝐸 ) |
7 |
5 6
|
sylan |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑋 ) ∈ ran 𝐸 ) |
8 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
9 |
8
|
a1i |
⊢ ( 𝐺 ∈ USGraph → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
10 |
2
|
eqcomi |
⊢ ( iEdg ‘ 𝐺 ) = 𝐸 |
11 |
10
|
rneqi |
⊢ ran ( iEdg ‘ 𝐺 ) = ran 𝐸 |
12 |
9 11
|
eqtrdi |
⊢ ( 𝐺 ∈ USGraph → ( Edg ‘ 𝐺 ) = ran 𝐸 ) |
13 |
12
|
adantr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( Edg ‘ 𝐺 ) = ran 𝐸 ) |
14 |
7 13
|
eleqtrrd |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑋 ) ∈ ( Edg ‘ 𝐺 ) ) |
15 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
16 |
1 15
|
usgredg |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝐸 ‘ 𝑋 ) ∈ ( Edg ‘ 𝐺 ) ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( 𝑥 ≠ 𝑦 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑦 } ) ) |
17 |
14 16
|
syldan |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( 𝑥 ≠ 𝑦 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑦 } ) ) |