Step |
Hyp |
Ref |
Expression |
1 |
|
usgredg3.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
usgredg3.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
3 |
1 2
|
usgredg3 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) |
4 |
|
eleq2 |
⊢ ( ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } → ( 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) ↔ 𝑌 ∈ { 𝑥 , 𝑧 } ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) → ( 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) ↔ 𝑌 ∈ { 𝑥 , 𝑧 } ) ) |
6 |
5
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) → ( 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) ↔ 𝑌 ∈ { 𝑥 , 𝑧 } ) ) |
7 |
|
simplrr |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) → 𝑧 ∈ 𝑉 ) |
8 |
7
|
adantl |
⊢ ( ( 𝑌 = 𝑥 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) → 𝑧 ∈ 𝑉 ) |
9 |
|
preq2 |
⊢ ( 𝑦 = 𝑧 → { 𝑥 , 𝑦 } = { 𝑥 , 𝑧 } ) |
10 |
9
|
eqeq2d |
⊢ ( 𝑦 = 𝑧 → ( { 𝑥 , 𝑧 } = { 𝑥 , 𝑦 } ↔ { 𝑥 , 𝑧 } = { 𝑥 , 𝑧 } ) ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝑌 = 𝑥 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) ∧ 𝑦 = 𝑧 ) → ( { 𝑥 , 𝑧 } = { 𝑥 , 𝑦 } ↔ { 𝑥 , 𝑧 } = { 𝑥 , 𝑧 } ) ) |
12 |
|
eqidd |
⊢ ( ( 𝑌 = 𝑥 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) → { 𝑥 , 𝑧 } = { 𝑥 , 𝑧 } ) |
13 |
8 11 12
|
rspcedvd |
⊢ ( ( 𝑌 = 𝑥 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) → ∃ 𝑦 ∈ 𝑉 { 𝑥 , 𝑧 } = { 𝑥 , 𝑦 } ) |
14 |
|
simprr |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) → ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) |
15 |
|
preq1 |
⊢ ( 𝑌 = 𝑥 → { 𝑌 , 𝑦 } = { 𝑥 , 𝑦 } ) |
16 |
14 15
|
eqeqan12rd |
⊢ ( ( 𝑌 = 𝑥 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) → ( ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ↔ { 𝑥 , 𝑧 } = { 𝑥 , 𝑦 } ) ) |
17 |
16
|
rexbidv |
⊢ ( ( 𝑌 = 𝑥 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) → ( ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ↔ ∃ 𝑦 ∈ 𝑉 { 𝑥 , 𝑧 } = { 𝑥 , 𝑦 } ) ) |
18 |
13 17
|
mpbird |
⊢ ( ( 𝑌 = 𝑥 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) → ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) |
19 |
18
|
ex |
⊢ ( 𝑌 = 𝑥 → ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) → ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) ) |
20 |
|
simplrl |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) → 𝑥 ∈ 𝑉 ) |
21 |
20
|
adantl |
⊢ ( ( 𝑌 = 𝑧 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) → 𝑥 ∈ 𝑉 ) |
22 |
|
preq2 |
⊢ ( 𝑦 = 𝑥 → { 𝑧 , 𝑦 } = { 𝑧 , 𝑥 } ) |
23 |
22
|
eqeq2d |
⊢ ( 𝑦 = 𝑥 → ( { 𝑥 , 𝑧 } = { 𝑧 , 𝑦 } ↔ { 𝑥 , 𝑧 } = { 𝑧 , 𝑥 } ) ) |
24 |
23
|
adantl |
⊢ ( ( ( 𝑌 = 𝑧 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) ∧ 𝑦 = 𝑥 ) → ( { 𝑥 , 𝑧 } = { 𝑧 , 𝑦 } ↔ { 𝑥 , 𝑧 } = { 𝑧 , 𝑥 } ) ) |
25 |
|
prcom |
⊢ { 𝑥 , 𝑧 } = { 𝑧 , 𝑥 } |
26 |
25
|
a1i |
⊢ ( ( 𝑌 = 𝑧 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) → { 𝑥 , 𝑧 } = { 𝑧 , 𝑥 } ) |
27 |
21 24 26
|
rspcedvd |
⊢ ( ( 𝑌 = 𝑧 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) → ∃ 𝑦 ∈ 𝑉 { 𝑥 , 𝑧 } = { 𝑧 , 𝑦 } ) |
28 |
|
preq1 |
⊢ ( 𝑌 = 𝑧 → { 𝑌 , 𝑦 } = { 𝑧 , 𝑦 } ) |
29 |
14 28
|
eqeqan12rd |
⊢ ( ( 𝑌 = 𝑧 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) → ( ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ↔ { 𝑥 , 𝑧 } = { 𝑧 , 𝑦 } ) ) |
30 |
29
|
rexbidv |
⊢ ( ( 𝑌 = 𝑧 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) → ( ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ↔ ∃ 𝑦 ∈ 𝑉 { 𝑥 , 𝑧 } = { 𝑧 , 𝑦 } ) ) |
31 |
27 30
|
mpbird |
⊢ ( ( 𝑌 = 𝑧 ∧ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) ) → ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) |
32 |
31
|
ex |
⊢ ( 𝑌 = 𝑧 → ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) → ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) ) |
33 |
19 32
|
jaoi |
⊢ ( ( 𝑌 = 𝑥 ∨ 𝑌 = 𝑧 ) → ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) → ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) ) |
34 |
|
elpri |
⊢ ( 𝑌 ∈ { 𝑥 , 𝑧 } → ( 𝑌 = 𝑥 ∨ 𝑌 = 𝑧 ) ) |
35 |
33 34
|
syl11 |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) → ( 𝑌 ∈ { 𝑥 , 𝑧 } → ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) ) |
36 |
6 35
|
sylbid |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) ) → ( 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) → ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) ) |
37 |
36
|
ex |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) → ( 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) → ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) ) ) |
38 |
37
|
rexlimdvva |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑥 ≠ 𝑧 ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑥 , 𝑧 } ) → ( 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) → ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) ) ) |
39 |
3 38
|
mpd |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) → ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) ) |
40 |
39
|
3impia |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) ) → ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) |