Metamath Proof Explorer


Theorem usgredgedg

Description: In a simple graph there is a 1-1 onto mapping between the indexed edges containing a fixed vertex and the set of edges containing this vertex. (Contributed by AV, 18-Oct-2020) (Proof shortened by AV, 11-Dec-2020)

Ref Expression
Hypotheses ushgredgedg.e 𝐸 = ( Edg ‘ 𝐺 )
ushgredgedg.i 𝐼 = ( iEdg ‘ 𝐺 )
ushgredgedg.v 𝑉 = ( Vtx ‘ 𝐺 )
ushgredgedg.a 𝐴 = { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) }
ushgredgedg.b 𝐵 = { 𝑒𝐸𝑁𝑒 }
ushgredgedg.f 𝐹 = ( 𝑥𝐴 ↦ ( 𝐼𝑥 ) )
Assertion usgredgedg ( ( 𝐺 ∈ USGraph ∧ 𝑁𝑉 ) → 𝐹 : 𝐴1-1-onto𝐵 )

Proof

Step Hyp Ref Expression
1 ushgredgedg.e 𝐸 = ( Edg ‘ 𝐺 )
2 ushgredgedg.i 𝐼 = ( iEdg ‘ 𝐺 )
3 ushgredgedg.v 𝑉 = ( Vtx ‘ 𝐺 )
4 ushgredgedg.a 𝐴 = { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) }
5 ushgredgedg.b 𝐵 = { 𝑒𝐸𝑁𝑒 }
6 ushgredgedg.f 𝐹 = ( 𝑥𝐴 ↦ ( 𝐼𝑥 ) )
7 usgruspgr ( 𝐺 ∈ USGraph → 𝐺 ∈ USPGraph )
8 uspgrushgr ( 𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph )
9 7 8 syl ( 𝐺 ∈ USGraph → 𝐺 ∈ USHGraph )
10 1 2 3 4 5 6 ushgredgedg ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) → 𝐹 : 𝐴1-1-onto𝐵 )
11 9 10 sylan ( ( 𝐺 ∈ USGraph ∧ 𝑁𝑉 ) → 𝐹 : 𝐴1-1-onto𝐵 )