Description: In a simple graph there is a 1-1 onto mapping between the indexed edges containing a fixed vertex and the set of edges containing this vertex. (Contributed by AV, 18-Oct-2020) (Proof shortened by AV, 11-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ushgredgedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
ushgredgedg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
ushgredgedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | ||
ushgredgedg.a | ⊢ 𝐴 = { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } | ||
ushgredgedg.b | ⊢ 𝐵 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } | ||
ushgredgedg.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐼 ‘ 𝑥 ) ) | ||
Assertion | usgredgedg | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ushgredgedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
2 | ushgredgedg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
3 | ushgredgedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
4 | ushgredgedg.a | ⊢ 𝐴 = { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } | |
5 | ushgredgedg.b | ⊢ 𝐵 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } | |
6 | ushgredgedg.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐼 ‘ 𝑥 ) ) | |
7 | usgruspgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ USPGraph ) | |
8 | uspgrushgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph ) | |
9 | 7 8 | syl | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ USHGraph ) |
10 | 1 2 3 4 5 6 | ushgredgedg | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
11 | 9 10 | sylan | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |