| Step | Hyp | Ref | Expression | 
						
							| 1 |  | usgredgleord.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | usgredgleord.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | fvex | ⊢ ( iEdg ‘ 𝐺 )  ∈  V | 
						
							| 4 | 3 | dmex | ⊢ dom  ( iEdg ‘ 𝐺 )  ∈  V | 
						
							| 5 | 4 | rabex | ⊢ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) }  ∈  V | 
						
							| 6 | 5 | a1i | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑁  ∈  𝑉 )  →  { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) }  ∈  V ) | 
						
							| 7 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 8 |  | eqid | ⊢ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) }  =  { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } | 
						
							| 9 |  | eleq2w | ⊢ ( 𝑒  =  𝑓  →  ( 𝑁  ∈  𝑒  ↔  𝑁  ∈  𝑓 ) ) | 
						
							| 10 | 9 | cbvrabv | ⊢ { 𝑒  ∈  𝐸  ∣  𝑁  ∈  𝑒 }  =  { 𝑓  ∈  𝐸  ∣  𝑁  ∈  𝑓 } | 
						
							| 11 |  | eqid | ⊢ ( 𝑦  ∈  { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) }  ↦  ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) )  =  ( 𝑦  ∈  { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) }  ↦  ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ) | 
						
							| 12 | 2 7 1 8 10 11 | usgredgedg | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝑦  ∈  { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) }  ↦  ( ( iEdg ‘ 𝐺 ) ‘ 𝑦 ) ) : { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } –1-1-onto→ { 𝑒  ∈  𝐸  ∣  𝑁  ∈  𝑒 } ) | 
						
							| 13 | 6 12 | hasheqf1od | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑁  ∈  𝑉 )  →  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } )  =  ( ♯ ‘ { 𝑒  ∈  𝐸  ∣  𝑁  ∈  𝑒 } ) ) | 
						
							| 14 | 1 7 | usgriedgleord | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑁  ∈  𝑉 )  →  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑁  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } )  ≤  ( ♯ ‘ 𝑉 ) ) | 
						
							| 15 | 13 14 | eqbrtrrd | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑁  ∈  𝑉 )  →  ( ♯ ‘ { 𝑒  ∈  𝐸  ∣  𝑁  ∈  𝑒 } )  ≤  ( ♯ ‘ 𝑉 ) ) |