Metamath Proof Explorer


Theorem usgredgne

Description: An edge of a simple graph always connects two different vertices. Analogue of usgrnloopv resp. usgrnloop . (Contributed by Alexander van der Vekens, 2-Sep-2017) (Revised by AV, 17-Oct-2020) (Proof shortened by AV, 27-Nov-2020)

Ref Expression
Hypothesis usgredgne.v 𝐸 = ( Edg ‘ 𝐺 )
Assertion usgredgne ( ( 𝐺 ∈ USGraph ∧ { 𝑀 , 𝑁 } ∈ 𝐸 ) → 𝑀𝑁 )

Proof

Step Hyp Ref Expression
1 usgredgne.v 𝐸 = ( Edg ‘ 𝐺 )
2 usgrumgr ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph )
3 1 umgredgne ( ( 𝐺 ∈ UMGraph ∧ { 𝑀 , 𝑁 } ∈ 𝐸 ) → 𝑀𝑁 )
4 2 3 sylan ( ( 𝐺 ∈ USGraph ∧ { 𝑀 , 𝑁 } ∈ 𝐸 ) → 𝑀𝑁 )