Metamath Proof Explorer


Theorem usgredgprv

Description: In a simple graph, an edge is an unordered pair of vertices. (Contributed by Alexander van der Vekens, 19-Aug-2017) (Revised by AV, 16-Oct-2020) (Proof shortened by AV, 11-Dec-2020)

Ref Expression
Hypotheses usgredg2.e 𝐸 = ( iEdg ‘ 𝐺 )
usgredgprv.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion usgredgprv ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( ( 𝐸𝑋 ) = { 𝑀 , 𝑁 } → ( 𝑀𝑉𝑁𝑉 ) ) )

Proof

Step Hyp Ref Expression
1 usgredg2.e 𝐸 = ( iEdg ‘ 𝐺 )
2 usgredgprv.v 𝑉 = ( Vtx ‘ 𝐺 )
3 usgrumgr ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph )
4 1 2 umgredgprv ( ( 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( ( 𝐸𝑋 ) = { 𝑀 , 𝑁 } → ( 𝑀𝑉𝑁𝑉 ) ) )
5 3 4 sylan ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( ( 𝐸𝑋 ) = { 𝑀 , 𝑁 } → ( 𝑀𝑉𝑁𝑉 ) ) )