Step |
Hyp |
Ref |
Expression |
1 |
|
usgredg2.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
2 |
|
usgredgprv.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
3 |
1 2
|
usgrss |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑋 ) ⊆ 𝑉 ) |
4 |
1
|
usgredg2 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) |
5 |
|
sseq1 |
⊢ ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( ( 𝐸 ‘ 𝑋 ) ⊆ 𝑉 ↔ { 𝑀 , 𝑁 } ⊆ 𝑉 ) ) |
6 |
|
fveq2 |
⊢ ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = ( ♯ ‘ { 𝑀 , 𝑁 } ) ) |
7 |
6
|
eqeq1d |
⊢ ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ↔ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) ) |
8 |
5 7
|
anbi12d |
⊢ ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( ( ( 𝐸 ‘ 𝑋 ) ⊆ 𝑉 ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) ↔ ( { 𝑀 , 𝑁 } ⊆ 𝑉 ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) ) ) |
9 |
|
eqid |
⊢ { 𝑀 , 𝑁 } = { 𝑀 , 𝑁 } |
10 |
9
|
hashprdifel |
⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ { 𝑀 , 𝑁 } ∧ 𝑁 ∈ { 𝑀 , 𝑁 } ∧ 𝑀 ≠ 𝑁 ) ) |
11 |
|
prssg |
⊢ ( ( 𝑀 ∈ { 𝑀 , 𝑁 } ∧ 𝑁 ∈ { 𝑀 , 𝑁 } ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ↔ { 𝑀 , 𝑁 } ⊆ 𝑉 ) ) |
12 |
11
|
3adant3 |
⊢ ( ( 𝑀 ∈ { 𝑀 , 𝑁 } ∧ 𝑁 ∈ { 𝑀 , 𝑁 } ∧ 𝑀 ≠ 𝑁 ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ↔ { 𝑀 , 𝑁 } ⊆ 𝑉 ) ) |
13 |
12
|
biimprd |
⊢ ( ( 𝑀 ∈ { 𝑀 , 𝑁 } ∧ 𝑁 ∈ { 𝑀 , 𝑁 } ∧ 𝑀 ≠ 𝑁 ) → ( { 𝑀 , 𝑁 } ⊆ 𝑉 → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
14 |
10 13
|
syl |
⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( { 𝑀 , 𝑁 } ⊆ 𝑉 → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
15 |
14
|
impcom |
⊢ ( ( { 𝑀 , 𝑁 } ⊆ 𝑉 ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) |
16 |
8 15
|
syl6bi |
⊢ ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( ( ( 𝐸 ‘ 𝑋 ) ⊆ 𝑉 ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
17 |
16
|
com12 |
⊢ ( ( ( 𝐸 ‘ 𝑋 ) ⊆ 𝑉 ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) → ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
18 |
3 4 17
|
syl2anc |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |