Step |
Hyp |
Ref |
Expression |
1 |
|
usgredg3.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
usgredg3.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
3 |
1 2
|
usgredg4 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) ) → ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) |
4 |
|
eqtr2 |
⊢ ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑥 } ) → { 𝑌 , 𝑦 } = { 𝑌 , 𝑥 } ) |
5 |
|
vex |
⊢ 𝑦 ∈ V |
6 |
|
vex |
⊢ 𝑥 ∈ V |
7 |
5 6
|
preqr2 |
⊢ ( { 𝑌 , 𝑦 } = { 𝑌 , 𝑥 } → 𝑦 = 𝑥 ) |
8 |
4 7
|
syl |
⊢ ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑥 } ) → 𝑦 = 𝑥 ) |
9 |
8
|
a1i |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) ) → ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑥 } ) → 𝑦 = 𝑥 ) ) |
10 |
9
|
ralrimivva |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) ) → ∀ 𝑦 ∈ 𝑉 ∀ 𝑥 ∈ 𝑉 ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑥 } ) → 𝑦 = 𝑥 ) ) |
11 |
|
preq2 |
⊢ ( 𝑦 = 𝑥 → { 𝑌 , 𝑦 } = { 𝑌 , 𝑥 } ) |
12 |
11
|
eqeq2d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ↔ ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑥 } ) ) |
13 |
12
|
reu4 |
⊢ ( ∃! 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ↔ ( ∃ 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ∧ ∀ 𝑦 ∈ 𝑉 ∀ 𝑥 ∈ 𝑉 ( ( ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ∧ ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑥 } ) → 𝑦 = 𝑥 ) ) ) |
14 |
3 10 13
|
sylanbrc |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ ( 𝐸 ‘ 𝑋 ) ) → ∃! 𝑦 ∈ 𝑉 ( 𝐸 ‘ 𝑋 ) = { 𝑌 , 𝑦 } ) |