Step |
Hyp |
Ref |
Expression |
1 |
|
usgrexi.p |
⊢ 𝑃 = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } |
2 |
|
f1oi |
⊢ ( I ↾ 𝑃 ) : 𝑃 –1-1-onto→ 𝑃 |
3 |
|
f1of1 |
⊢ ( ( I ↾ 𝑃 ) : 𝑃 –1-1-onto→ 𝑃 → ( I ↾ 𝑃 ) : 𝑃 –1-1→ 𝑃 ) |
4 |
2 3
|
ax-mp |
⊢ ( I ↾ 𝑃 ) : 𝑃 –1-1→ 𝑃 |
5 |
|
dmresi |
⊢ dom ( I ↾ 𝑃 ) = 𝑃 |
6 |
|
f1eq2 |
⊢ ( dom ( I ↾ 𝑃 ) = 𝑃 → ( ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1→ 𝑃 ↔ ( I ↾ 𝑃 ) : 𝑃 –1-1→ 𝑃 ) ) |
7 |
5 6
|
ax-mp |
⊢ ( ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1→ 𝑃 ↔ ( I ↾ 𝑃 ) : 𝑃 –1-1→ 𝑃 ) |
8 |
4 7
|
mpbir |
⊢ ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1→ 𝑃 |
9 |
1
|
eqcomi |
⊢ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } = 𝑃 |
10 |
|
f1eq3 |
⊢ ( { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } = 𝑃 → ( ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1→ 𝑃 ) ) |
11 |
9 10
|
mp1i |
⊢ ( 𝑉 ∈ 𝑊 → ( ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1→ 𝑃 ) ) |
12 |
8 11
|
mpbiri |
⊢ ( 𝑉 ∈ 𝑊 → ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |