Metamath Proof Explorer


Theorem usgrexilem

Description: Lemma for usgrexi . (Contributed by AV, 12-Jan-2018) (Revised by AV, 10-Nov-2021)

Ref Expression
Hypothesis usgrexi.p 𝑃 = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 }
Assertion usgrexilem ( 𝑉𝑊 → ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } )

Proof

Step Hyp Ref Expression
1 usgrexi.p 𝑃 = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 }
2 f1oi ( I ↾ 𝑃 ) : 𝑃1-1-onto𝑃
3 f1of1 ( ( I ↾ 𝑃 ) : 𝑃1-1-onto𝑃 → ( I ↾ 𝑃 ) : 𝑃1-1𝑃 )
4 2 3 ax-mp ( I ↾ 𝑃 ) : 𝑃1-1𝑃
5 dmresi dom ( I ↾ 𝑃 ) = 𝑃
6 f1eq2 ( dom ( I ↾ 𝑃 ) = 𝑃 → ( ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1𝑃 ↔ ( I ↾ 𝑃 ) : 𝑃1-1𝑃 ) )
7 5 6 ax-mp ( ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1𝑃 ↔ ( I ↾ 𝑃 ) : 𝑃1-1𝑃 )
8 4 7 mpbir ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1𝑃
9 1 eqcomi { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } = 𝑃
10 f1eq3 ( { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } = 𝑃 → ( ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1𝑃 ) )
11 9 10 mp1i ( 𝑉𝑊 → ( ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1𝑃 ) )
12 8 11 mpbiri ( 𝑉𝑊 → ( I ↾ 𝑃 ) : dom ( I ↾ 𝑃 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } )