Step |
Hyp |
Ref |
Expression |
1 |
|
usgrexmpl.v |
⊢ 𝑉 = ( 0 ... 4 ) |
2 |
|
usgrexmpl.e |
⊢ 𝐸 = 〈“ { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } ”〉 |
3 |
|
usgrexmpl.g |
⊢ 𝐺 = 〈 𝑉 , 𝐸 〉 |
4 |
1 2
|
usgrexmplef |
⊢ 𝐸 : dom 𝐸 –1-1→ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } |
5 |
|
opex |
⊢ 〈 𝑉 , 𝐸 〉 ∈ V |
6 |
3 5
|
eqeltri |
⊢ 𝐺 ∈ V |
7 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
8 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
9 |
7 8
|
isusgrs |
⊢ ( 𝐺 ∈ V → ( 𝐺 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
10 |
1 2 3
|
usgrexmpllem |
⊢ ( ( Vtx ‘ 𝐺 ) = 𝑉 ∧ ( iEdg ‘ 𝐺 ) = 𝐸 ) |
11 |
|
simpr |
⊢ ( ( ( Vtx ‘ 𝐺 ) = 𝑉 ∧ ( iEdg ‘ 𝐺 ) = 𝐸 ) → ( iEdg ‘ 𝐺 ) = 𝐸 ) |
12 |
11
|
dmeqd |
⊢ ( ( ( Vtx ‘ 𝐺 ) = 𝑉 ∧ ( iEdg ‘ 𝐺 ) = 𝐸 ) → dom ( iEdg ‘ 𝐺 ) = dom 𝐸 ) |
13 |
|
pweq |
⊢ ( ( Vtx ‘ 𝐺 ) = 𝑉 → 𝒫 ( Vtx ‘ 𝐺 ) = 𝒫 𝑉 ) |
14 |
13
|
adantr |
⊢ ( ( ( Vtx ‘ 𝐺 ) = 𝑉 ∧ ( iEdg ‘ 𝐺 ) = 𝐸 ) → 𝒫 ( Vtx ‘ 𝐺 ) = 𝒫 𝑉 ) |
15 |
14
|
rabeqdv |
⊢ ( ( ( Vtx ‘ 𝐺 ) = 𝑉 ∧ ( iEdg ‘ 𝐺 ) = 𝐸 ) → { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } = { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
16 |
11 12 15
|
f1eq123d |
⊢ ( ( ( Vtx ‘ 𝐺 ) = 𝑉 ∧ ( iEdg ‘ 𝐺 ) = 𝐸 ) → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ↔ 𝐸 : dom 𝐸 –1-1→ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
17 |
10 16
|
ax-mp |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ↔ 𝐸 : dom 𝐸 –1-1→ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
18 |
9 17
|
bitrdi |
⊢ ( 𝐺 ∈ V → ( 𝐺 ∈ USGraph ↔ 𝐸 : dom 𝐸 –1-1→ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
19 |
6 18
|
ax-mp |
⊢ ( 𝐺 ∈ USGraph ↔ 𝐸 : dom 𝐸 –1-1→ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
20 |
4 19
|
mpbir |
⊢ 𝐺 ∈ USGraph |