Metamath Proof Explorer


Theorem usgrexmpl

Description: G is a simple graph of five vertices 0 , 1 , 2 , 3 , 4 , with edges { 0 , 1 } , { 1 , 2 } , { 2 , 0 } , { 0 , 3 } . (Contributed by Alexander van der Vekens, 15-Aug-2017) (Revised by AV, 21-Oct-2020)

Ref Expression
Hypotheses usgrexmpl.v 𝑉 = ( 0 ... 4 )
usgrexmpl.e 𝐸 = ⟨“ { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } ”⟩
usgrexmpl.g 𝐺 = ⟨ 𝑉 , 𝐸
Assertion usgrexmpl 𝐺 ∈ USGraph

Proof

Step Hyp Ref Expression
1 usgrexmpl.v 𝑉 = ( 0 ... 4 )
2 usgrexmpl.e 𝐸 = ⟨“ { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } ”⟩
3 usgrexmpl.g 𝐺 = ⟨ 𝑉 , 𝐸
4 1 2 usgrexmplef 𝐸 : dom 𝐸1-1→ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 }
5 opex 𝑉 , 𝐸 ⟩ ∈ V
6 3 5 eqeltri 𝐺 ∈ V
7 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
8 eqid ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 )
9 7 8 isusgrs ( 𝐺 ∈ V → ( 𝐺 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) )
10 1 2 3 usgrexmpllem ( ( Vtx ‘ 𝐺 ) = 𝑉 ∧ ( iEdg ‘ 𝐺 ) = 𝐸 )
11 simpr ( ( ( Vtx ‘ 𝐺 ) = 𝑉 ∧ ( iEdg ‘ 𝐺 ) = 𝐸 ) → ( iEdg ‘ 𝐺 ) = 𝐸 )
12 11 dmeqd ( ( ( Vtx ‘ 𝐺 ) = 𝑉 ∧ ( iEdg ‘ 𝐺 ) = 𝐸 ) → dom ( iEdg ‘ 𝐺 ) = dom 𝐸 )
13 pweq ( ( Vtx ‘ 𝐺 ) = 𝑉 → 𝒫 ( Vtx ‘ 𝐺 ) = 𝒫 𝑉 )
14 13 adantr ( ( ( Vtx ‘ 𝐺 ) = 𝑉 ∧ ( iEdg ‘ 𝐺 ) = 𝐸 ) → 𝒫 ( Vtx ‘ 𝐺 ) = 𝒫 𝑉 )
15 14 rabeqdv ( ( ( Vtx ‘ 𝐺 ) = 𝑉 ∧ ( iEdg ‘ 𝐺 ) = 𝐸 ) → { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } = { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } )
16 11 12 15 f1eq123d ( ( ( Vtx ‘ 𝐺 ) = 𝑉 ∧ ( iEdg ‘ 𝐺 ) = 𝐸 ) → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ↔ 𝐸 : dom 𝐸1-1→ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) )
17 10 16 ax-mp ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ↔ 𝐸 : dom 𝐸1-1→ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } )
18 9 17 bitrdi ( 𝐺 ∈ V → ( 𝐺 ∈ USGraph ↔ 𝐸 : dom 𝐸1-1→ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) )
19 6 18 ax-mp ( 𝐺 ∈ USGraph ↔ 𝐸 : dom 𝐸1-1→ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } )
20 4 19 mpbir 𝐺 ∈ USGraph