Step |
Hyp |
Ref |
Expression |
1 |
|
usgrexmplef.v |
⊢ 𝑉 = ( 0 ... 4 ) |
2 |
|
usgrexmplef.e |
⊢ 𝐸 = 〈“ { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } ”〉 |
3 |
|
usgrexmpldifpr |
⊢ ( ( { 0 , 1 } ≠ { 1 , 2 } ∧ { 0 , 1 } ≠ { 2 , 0 } ∧ { 0 , 1 } ≠ { 0 , 3 } ) ∧ ( { 1 , 2 } ≠ { 2 , 0 } ∧ { 1 , 2 } ≠ { 0 , 3 } ∧ { 2 , 0 } ≠ { 0 , 3 } ) ) |
4 |
|
prex |
⊢ { 0 , 1 } ∈ V |
5 |
|
prex |
⊢ { 1 , 2 } ∈ V |
6 |
|
prex |
⊢ { 2 , 0 } ∈ V |
7 |
|
prex |
⊢ { 0 , 3 } ∈ V |
8 |
|
s4f1o |
⊢ ( ( ( { 0 , 1 } ∈ V ∧ { 1 , 2 } ∈ V ) ∧ ( { 2 , 0 } ∈ V ∧ { 0 , 3 } ∈ V ) ) → ( ( ( { 0 , 1 } ≠ { 1 , 2 } ∧ { 0 , 1 } ≠ { 2 , 0 } ∧ { 0 , 1 } ≠ { 0 , 3 } ) ∧ ( { 1 , 2 } ≠ { 2 , 0 } ∧ { 1 , 2 } ≠ { 0 , 3 } ∧ { 2 , 0 } ≠ { 0 , 3 } ) ) → ( 𝐸 = 〈“ { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } ”〉 → 𝐸 : dom 𝐸 –1-1-onto→ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ) ) ) |
9 |
4 5 6 7 8
|
mp4an |
⊢ ( ( ( { 0 , 1 } ≠ { 1 , 2 } ∧ { 0 , 1 } ≠ { 2 , 0 } ∧ { 0 , 1 } ≠ { 0 , 3 } ) ∧ ( { 1 , 2 } ≠ { 2 , 0 } ∧ { 1 , 2 } ≠ { 0 , 3 } ∧ { 2 , 0 } ≠ { 0 , 3 } ) ) → ( 𝐸 = 〈“ { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } ”〉 → 𝐸 : dom 𝐸 –1-1-onto→ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ) ) |
10 |
3 2 9
|
mp2 |
⊢ 𝐸 : dom 𝐸 –1-1-onto→ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) |
11 |
|
f1of1 |
⊢ ( 𝐸 : dom 𝐸 –1-1-onto→ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) → 𝐸 : dom 𝐸 –1-1→ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ) |
12 |
|
id |
⊢ ( ran 𝐸 ⊆ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) → ran 𝐸 ⊆ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ) |
13 |
|
vex |
⊢ 𝑝 ∈ V |
14 |
13
|
elpr |
⊢ ( 𝑝 ∈ { { 0 , 1 } , { 1 , 2 } } ↔ ( 𝑝 = { 0 , 1 } ∨ 𝑝 = { 1 , 2 } ) ) |
15 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
16 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
17 |
|
0re |
⊢ 0 ∈ ℝ |
18 |
|
4re |
⊢ 4 ∈ ℝ |
19 |
|
4pos |
⊢ 0 < 4 |
20 |
17 18 19
|
ltleii |
⊢ 0 ≤ 4 |
21 |
|
elfz2nn0 |
⊢ ( 0 ∈ ( 0 ... 4 ) ↔ ( 0 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 0 ≤ 4 ) ) |
22 |
15 16 20 21
|
mpbir3an |
⊢ 0 ∈ ( 0 ... 4 ) |
23 |
22 1
|
eleqtrri |
⊢ 0 ∈ 𝑉 |
24 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
25 |
|
1re |
⊢ 1 ∈ ℝ |
26 |
|
1lt4 |
⊢ 1 < 4 |
27 |
25 18 26
|
ltleii |
⊢ 1 ≤ 4 |
28 |
|
elfz2nn0 |
⊢ ( 1 ∈ ( 0 ... 4 ) ↔ ( 1 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 1 ≤ 4 ) ) |
29 |
24 16 27 28
|
mpbir3an |
⊢ 1 ∈ ( 0 ... 4 ) |
30 |
29 1
|
eleqtrri |
⊢ 1 ∈ 𝑉 |
31 |
|
prelpwi |
⊢ ( ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) → { 0 , 1 } ∈ 𝒫 𝑉 ) |
32 |
|
eleq1 |
⊢ ( 𝑝 = { 0 , 1 } → ( 𝑝 ∈ 𝒫 𝑉 ↔ { 0 , 1 } ∈ 𝒫 𝑉 ) ) |
33 |
31 32
|
syl5ibrcom |
⊢ ( ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) → ( 𝑝 = { 0 , 1 } → 𝑝 ∈ 𝒫 𝑉 ) ) |
34 |
23 30 33
|
mp2an |
⊢ ( 𝑝 = { 0 , 1 } → 𝑝 ∈ 𝒫 𝑉 ) |
35 |
|
fveq2 |
⊢ ( 𝑝 = { 0 , 1 } → ( ♯ ‘ 𝑝 ) = ( ♯ ‘ { 0 , 1 } ) ) |
36 |
|
prhash2ex |
⊢ ( ♯ ‘ { 0 , 1 } ) = 2 |
37 |
35 36
|
eqtrdi |
⊢ ( 𝑝 = { 0 , 1 } → ( ♯ ‘ 𝑝 ) = 2 ) |
38 |
34 37
|
jca |
⊢ ( 𝑝 = { 0 , 1 } → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
39 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
40 |
|
2re |
⊢ 2 ∈ ℝ |
41 |
|
2lt4 |
⊢ 2 < 4 |
42 |
40 18 41
|
ltleii |
⊢ 2 ≤ 4 |
43 |
|
elfz2nn0 |
⊢ ( 2 ∈ ( 0 ... 4 ) ↔ ( 2 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 2 ≤ 4 ) ) |
44 |
39 16 42 43
|
mpbir3an |
⊢ 2 ∈ ( 0 ... 4 ) |
45 |
44 1
|
eleqtrri |
⊢ 2 ∈ 𝑉 |
46 |
|
prelpwi |
⊢ ( ( 1 ∈ 𝑉 ∧ 2 ∈ 𝑉 ) → { 1 , 2 } ∈ 𝒫 𝑉 ) |
47 |
|
eleq1 |
⊢ ( 𝑝 = { 1 , 2 } → ( 𝑝 ∈ 𝒫 𝑉 ↔ { 1 , 2 } ∈ 𝒫 𝑉 ) ) |
48 |
46 47
|
syl5ibrcom |
⊢ ( ( 1 ∈ 𝑉 ∧ 2 ∈ 𝑉 ) → ( 𝑝 = { 1 , 2 } → 𝑝 ∈ 𝒫 𝑉 ) ) |
49 |
30 45 48
|
mp2an |
⊢ ( 𝑝 = { 1 , 2 } → 𝑝 ∈ 𝒫 𝑉 ) |
50 |
|
fveq2 |
⊢ ( 𝑝 = { 1 , 2 } → ( ♯ ‘ 𝑝 ) = ( ♯ ‘ { 1 , 2 } ) ) |
51 |
|
1ne2 |
⊢ 1 ≠ 2 |
52 |
|
1nn |
⊢ 1 ∈ ℕ |
53 |
|
2nn |
⊢ 2 ∈ ℕ |
54 |
|
hashprg |
⊢ ( ( 1 ∈ ℕ ∧ 2 ∈ ℕ ) → ( 1 ≠ 2 ↔ ( ♯ ‘ { 1 , 2 } ) = 2 ) ) |
55 |
52 53 54
|
mp2an |
⊢ ( 1 ≠ 2 ↔ ( ♯ ‘ { 1 , 2 } ) = 2 ) |
56 |
51 55
|
mpbi |
⊢ ( ♯ ‘ { 1 , 2 } ) = 2 |
57 |
50 56
|
eqtrdi |
⊢ ( 𝑝 = { 1 , 2 } → ( ♯ ‘ 𝑝 ) = 2 ) |
58 |
49 57
|
jca |
⊢ ( 𝑝 = { 1 , 2 } → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
59 |
38 58
|
jaoi |
⊢ ( ( 𝑝 = { 0 , 1 } ∨ 𝑝 = { 1 , 2 } ) → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
60 |
14 59
|
sylbi |
⊢ ( 𝑝 ∈ { { 0 , 1 } , { 1 , 2 } } → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
61 |
13
|
elpr |
⊢ ( 𝑝 ∈ { { 2 , 0 } , { 0 , 3 } } ↔ ( 𝑝 = { 2 , 0 } ∨ 𝑝 = { 0 , 3 } ) ) |
62 |
|
prelpwi |
⊢ ( ( 2 ∈ 𝑉 ∧ 0 ∈ 𝑉 ) → { 2 , 0 } ∈ 𝒫 𝑉 ) |
63 |
|
eleq1 |
⊢ ( 𝑝 = { 2 , 0 } → ( 𝑝 ∈ 𝒫 𝑉 ↔ { 2 , 0 } ∈ 𝒫 𝑉 ) ) |
64 |
62 63
|
syl5ibrcom |
⊢ ( ( 2 ∈ 𝑉 ∧ 0 ∈ 𝑉 ) → ( 𝑝 = { 2 , 0 } → 𝑝 ∈ 𝒫 𝑉 ) ) |
65 |
45 23 64
|
mp2an |
⊢ ( 𝑝 = { 2 , 0 } → 𝑝 ∈ 𝒫 𝑉 ) |
66 |
|
fveq2 |
⊢ ( 𝑝 = { 2 , 0 } → ( ♯ ‘ 𝑝 ) = ( ♯ ‘ { 2 , 0 } ) ) |
67 |
|
2ne0 |
⊢ 2 ≠ 0 |
68 |
|
2z |
⊢ 2 ∈ ℤ |
69 |
|
0z |
⊢ 0 ∈ ℤ |
70 |
|
hashprg |
⊢ ( ( 2 ∈ ℤ ∧ 0 ∈ ℤ ) → ( 2 ≠ 0 ↔ ( ♯ ‘ { 2 , 0 } ) = 2 ) ) |
71 |
68 69 70
|
mp2an |
⊢ ( 2 ≠ 0 ↔ ( ♯ ‘ { 2 , 0 } ) = 2 ) |
72 |
67 71
|
mpbi |
⊢ ( ♯ ‘ { 2 , 0 } ) = 2 |
73 |
66 72
|
eqtrdi |
⊢ ( 𝑝 = { 2 , 0 } → ( ♯ ‘ 𝑝 ) = 2 ) |
74 |
65 73
|
jca |
⊢ ( 𝑝 = { 2 , 0 } → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
75 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
76 |
|
3re |
⊢ 3 ∈ ℝ |
77 |
|
3lt4 |
⊢ 3 < 4 |
78 |
76 18 77
|
ltleii |
⊢ 3 ≤ 4 |
79 |
|
elfz2nn0 |
⊢ ( 3 ∈ ( 0 ... 4 ) ↔ ( 3 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 3 ≤ 4 ) ) |
80 |
75 16 78 79
|
mpbir3an |
⊢ 3 ∈ ( 0 ... 4 ) |
81 |
80 1
|
eleqtrri |
⊢ 3 ∈ 𝑉 |
82 |
|
prelpwi |
⊢ ( ( 0 ∈ 𝑉 ∧ 3 ∈ 𝑉 ) → { 0 , 3 } ∈ 𝒫 𝑉 ) |
83 |
|
eleq1 |
⊢ ( 𝑝 = { 0 , 3 } → ( 𝑝 ∈ 𝒫 𝑉 ↔ { 0 , 3 } ∈ 𝒫 𝑉 ) ) |
84 |
82 83
|
syl5ibrcom |
⊢ ( ( 0 ∈ 𝑉 ∧ 3 ∈ 𝑉 ) → ( 𝑝 = { 0 , 3 } → 𝑝 ∈ 𝒫 𝑉 ) ) |
85 |
23 81 84
|
mp2an |
⊢ ( 𝑝 = { 0 , 3 } → 𝑝 ∈ 𝒫 𝑉 ) |
86 |
|
fveq2 |
⊢ ( 𝑝 = { 0 , 3 } → ( ♯ ‘ 𝑝 ) = ( ♯ ‘ { 0 , 3 } ) ) |
87 |
|
3ne0 |
⊢ 3 ≠ 0 |
88 |
87
|
necomi |
⊢ 0 ≠ 3 |
89 |
|
3z |
⊢ 3 ∈ ℤ |
90 |
|
hashprg |
⊢ ( ( 0 ∈ ℤ ∧ 3 ∈ ℤ ) → ( 0 ≠ 3 ↔ ( ♯ ‘ { 0 , 3 } ) = 2 ) ) |
91 |
69 89 90
|
mp2an |
⊢ ( 0 ≠ 3 ↔ ( ♯ ‘ { 0 , 3 } ) = 2 ) |
92 |
88 91
|
mpbi |
⊢ ( ♯ ‘ { 0 , 3 } ) = 2 |
93 |
86 92
|
eqtrdi |
⊢ ( 𝑝 = { 0 , 3 } → ( ♯ ‘ 𝑝 ) = 2 ) |
94 |
85 93
|
jca |
⊢ ( 𝑝 = { 0 , 3 } → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
95 |
74 94
|
jaoi |
⊢ ( ( 𝑝 = { 2 , 0 } ∨ 𝑝 = { 0 , 3 } ) → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
96 |
61 95
|
sylbi |
⊢ ( 𝑝 ∈ { { 2 , 0 } , { 0 , 3 } } → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
97 |
60 96
|
jaoi |
⊢ ( ( 𝑝 ∈ { { 0 , 1 } , { 1 , 2 } } ∨ 𝑝 ∈ { { 2 , 0 } , { 0 , 3 } } ) → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
98 |
|
elun |
⊢ ( 𝑝 ∈ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ↔ ( 𝑝 ∈ { { 0 , 1 } , { 1 , 2 } } ∨ 𝑝 ∈ { { 2 , 0 } , { 0 , 3 } } ) ) |
99 |
|
fveqeq2 |
⊢ ( 𝑒 = 𝑝 → ( ( ♯ ‘ 𝑒 ) = 2 ↔ ( ♯ ‘ 𝑝 ) = 2 ) ) |
100 |
99
|
elrab |
⊢ ( 𝑝 ∈ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ↔ ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
101 |
97 98 100
|
3imtr4i |
⊢ ( 𝑝 ∈ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) → 𝑝 ∈ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
102 |
101
|
ssriv |
⊢ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ⊆ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } |
103 |
12 102
|
sstrdi |
⊢ ( ran 𝐸 ⊆ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) → ran 𝐸 ⊆ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
104 |
103
|
anim2i |
⊢ ( ( 𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ) → ( 𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
105 |
|
df-f |
⊢ ( 𝐸 : dom 𝐸 ⟶ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ↔ ( 𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ) ) |
106 |
|
df-f |
⊢ ( 𝐸 : dom 𝐸 ⟶ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ↔ ( 𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
107 |
104 105 106
|
3imtr4i |
⊢ ( 𝐸 : dom 𝐸 ⟶ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) → 𝐸 : dom 𝐸 ⟶ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
108 |
107
|
anim1i |
⊢ ( ( 𝐸 : dom 𝐸 ⟶ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ∧ ∀ 𝑥 ∃* 𝑦 𝑦 𝐸 𝑥 ) → ( 𝐸 : dom 𝐸 ⟶ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ∧ ∀ 𝑥 ∃* 𝑦 𝑦 𝐸 𝑥 ) ) |
109 |
|
dff12 |
⊢ ( 𝐸 : dom 𝐸 –1-1→ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ↔ ( 𝐸 : dom 𝐸 ⟶ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ∧ ∀ 𝑥 ∃* 𝑦 𝑦 𝐸 𝑥 ) ) |
110 |
|
dff12 |
⊢ ( 𝐸 : dom 𝐸 –1-1→ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ↔ ( 𝐸 : dom 𝐸 ⟶ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ∧ ∀ 𝑥 ∃* 𝑦 𝑦 𝐸 𝑥 ) ) |
111 |
108 109 110
|
3imtr4i |
⊢ ( 𝐸 : dom 𝐸 –1-1→ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) → 𝐸 : dom 𝐸 –1-1→ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
112 |
10 11 111
|
mp2b |
⊢ 𝐸 : dom 𝐸 –1-1→ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } |