Step |
Hyp |
Ref |
Expression |
1 |
|
usgrislfuspgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
usgrislfuspgr.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
usgruspgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ USPGraph ) |
4 |
1 2
|
usgrfs |
⊢ ( 𝐺 ∈ USGraph → 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
5 |
|
f1f |
⊢ ( 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
6 |
|
2re |
⊢ 2 ∈ ℝ |
7 |
6
|
leidi |
⊢ 2 ≤ 2 |
8 |
7
|
a1i |
⊢ ( ( ♯ ‘ 𝑥 ) = 2 → 2 ≤ 2 ) |
9 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑥 ) = 2 → ( 2 ≤ ( ♯ ‘ 𝑥 ) ↔ 2 ≤ 2 ) ) |
10 |
8 9
|
mpbird |
⊢ ( ( ♯ ‘ 𝑥 ) = 2 → 2 ≤ ( ♯ ‘ 𝑥 ) ) |
11 |
10
|
a1i |
⊢ ( 𝑥 ∈ 𝒫 𝑉 → ( ( ♯ ‘ 𝑥 ) = 2 → 2 ≤ ( ♯ ‘ 𝑥 ) ) ) |
12 |
11
|
ss2rabi |
⊢ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } |
13 |
12
|
a1i |
⊢ ( 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
14 |
5 13
|
fssd |
⊢ ( 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
15 |
4 14
|
syl |
⊢ ( 𝐺 ∈ USGraph → 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
16 |
3 15
|
jca |
⊢ ( 𝐺 ∈ USGraph → ( 𝐺 ∈ USPGraph ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ) |
17 |
1 2
|
uspgrf |
⊢ ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
18 |
|
df-f1 |
⊢ ( 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∧ Fun ◡ 𝐼 ) ) |
19 |
|
fin |
⊢ ( 𝐼 : dom 𝐼 ⟶ ( { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∩ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ↔ ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ) |
20 |
|
umgrislfupgrlem |
⊢ ( { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∩ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) = { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } |
21 |
|
feq3 |
⊢ ( ( { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∩ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) = { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( 𝐼 : dom 𝐼 ⟶ ( { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∩ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ↔ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
22 |
20 21
|
ax-mp |
⊢ ( 𝐼 : dom 𝐼 ⟶ ( { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∩ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ↔ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
23 |
19 22
|
sylbb1 |
⊢ ( ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) → 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
24 |
23
|
anim1i |
⊢ ( ( ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ Fun ◡ 𝐼 ) → ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ Fun ◡ 𝐼 ) ) |
25 |
|
df-f1 |
⊢ ( 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ Fun ◡ 𝐼 ) ) |
26 |
24 25
|
sylibr |
⊢ ( ( ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ∧ Fun ◡ 𝐼 ) → 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
27 |
26
|
ex |
⊢ ( ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) → ( Fun ◡ 𝐼 → 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
28 |
27
|
impancom |
⊢ ( ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∧ Fun ◡ 𝐼 ) → ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
29 |
18 28
|
sylbi |
⊢ ( 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
30 |
29
|
imp |
⊢ ( ( 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) → 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
31 |
17 30
|
sylan |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) → 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
32 |
1 2
|
isusgr |
⊢ ( 𝐺 ∈ USPGraph → ( 𝐺 ∈ USGraph ↔ 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) → ( 𝐺 ∈ USGraph ↔ 𝐼 : dom 𝐼 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
34 |
31 33
|
mpbird |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) → 𝐺 ∈ USGraph ) |
35 |
16 34
|
impbii |
⊢ ( 𝐺 ∈ USGraph ↔ ( 𝐺 ∈ USPGraph ∧ 𝐼 : dom 𝐼 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ) |