Metamath Proof Explorer


Theorem usgrnloop

Description: In a simple graph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 19-Aug-2017) (Proof shortened by Alexander van der Vekens, 20-Mar-2018) (Revised by AV, 17-Oct-2020) (Proof shortened by AV, 11-Dec-2020)

Ref Expression
Hypothesis usgrnloopv.e 𝐸 = ( iEdg ‘ 𝐺 )
Assertion usgrnloop ( 𝐺 ∈ USGraph → ( ∃ 𝑥 ∈ dom 𝐸 ( 𝐸𝑥 ) = { 𝑀 , 𝑁 } → 𝑀𝑁 ) )

Proof

Step Hyp Ref Expression
1 usgrnloopv.e 𝐸 = ( iEdg ‘ 𝐺 )
2 usgrumgr ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph )
3 1 umgrnloop ( 𝐺 ∈ UMGraph → ( ∃ 𝑥 ∈ dom 𝐸 ( 𝐸𝑥 ) = { 𝑀 , 𝑁 } → 𝑀𝑁 ) )
4 2 3 syl ( 𝐺 ∈ USGraph → ( ∃ 𝑥 ∈ dom 𝐸 ( 𝐸𝑥 ) = { 𝑀 , 𝑁 } → 𝑀𝑁 ) )