Database
GRAPH THEORY
Undirected graphs
Undirected simple graphs
usgrnloop0
Metamath Proof Explorer
Description: A simple graph has no loops. (Contributed by Alexander van der Vekens , 6-Dec-2017) (Revised by AV , 17-Oct-2020) (Proof shortened by AV , 11-Dec-2020)
Ref
Expression
Hypothesis
usgrnloopv.e
⊢ 𝐸 = ( iEdg ‘ 𝐺 )
Assertion
usgrnloop0
⊢ ( 𝐺 ∈ USGraph → { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) = { 𝑈 } } = ∅ )
Proof
Step
Hyp
Ref
Expression
1
usgrnloopv.e
⊢ 𝐸 = ( iEdg ‘ 𝐺 )
2
usgrumgr
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph )
3
1
umgrnloop0
⊢ ( 𝐺 ∈ UMGraph → { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) = { 𝑈 } } = ∅ )
4
2 3
syl
⊢ ( 𝐺 ∈ USGraph → { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑥 ) = { 𝑈 } } = ∅ )