Metamath Proof Explorer


Theorem usgrnloop0

Description: A simple graph has no loops. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 17-Oct-2020) (Proof shortened by AV, 11-Dec-2020)

Ref Expression
Hypothesis usgrnloopv.e 𝐸 = ( iEdg ‘ 𝐺 )
Assertion usgrnloop0 ( 𝐺 ∈ USGraph → { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸𝑥 ) = { 𝑈 } } = ∅ )

Proof

Step Hyp Ref Expression
1 usgrnloopv.e 𝐸 = ( iEdg ‘ 𝐺 )
2 usgrumgr ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph )
3 1 umgrnloop0 ( 𝐺 ∈ UMGraph → { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸𝑥 ) = { 𝑈 } } = ∅ )
4 2 3 syl ( 𝐺 ∈ USGraph → { 𝑥 ∈ dom 𝐸 ∣ ( 𝐸𝑥 ) = { 𝑈 } } = ∅ )