Metamath Proof Explorer


Theorem usgrnloopv

Description: In a simple graph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 26-Jan-2018) (Revised by AV, 17-Oct-2020) (Proof shortened by AV, 11-Dec-2020)

Ref Expression
Hypothesis usgrnloopv.e 𝐸 = ( iEdg ‘ 𝐺 )
Assertion usgrnloopv ( ( 𝐺 ∈ USGraph ∧ 𝑀𝑊 ) → ( ( 𝐸𝑋 ) = { 𝑀 , 𝑁 } → 𝑀𝑁 ) )

Proof

Step Hyp Ref Expression
1 usgrnloopv.e 𝐸 = ( iEdg ‘ 𝐺 )
2 usgrumgr ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph )
3 1 umgrnloopv ( ( 𝐺 ∈ UMGraph ∧ 𝑀𝑊 ) → ( ( 𝐸𝑋 ) = { 𝑀 , 𝑁 } → 𝑀𝑁 ) )
4 2 3 sylan ( ( 𝐺 ∈ USGraph ∧ 𝑀𝑊 ) → ( ( 𝐸𝑋 ) = { 𝑀 , 𝑁 } → 𝑀𝑁 ) )