Metamath Proof Explorer


Theorem usgrpredgv

Description: An edge of a simple graph always connects two vertices. Analogue of usgredgprv . (Contributed by Alexander van der Vekens, 7-Oct-2017) (Revised by AV, 9-Jan-2020) (Revised by AV, 23-Oct-2020) (Proof shortened by AV, 27-Nov-2020)

Ref Expression
Hypotheses usgredgppr.e 𝐸 = ( Edg ‘ 𝐺 )
usgrpredgv.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion usgrpredgv ( ( 𝐺 ∈ USGraph ∧ { 𝑀 , 𝑁 } ∈ 𝐸 ) → ( 𝑀𝑉𝑁𝑉 ) )

Proof

Step Hyp Ref Expression
1 usgredgppr.e 𝐸 = ( Edg ‘ 𝐺 )
2 usgrpredgv.v 𝑉 = ( Vtx ‘ 𝐺 )
3 usgrumgr ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph )
4 2 1 umgrpredgv ( ( 𝐺 ∈ UMGraph ∧ { 𝑀 , 𝑁 } ∈ 𝐸 ) → ( 𝑀𝑉𝑁𝑉 ) )
5 3 4 sylan ( ( 𝐺 ∈ USGraph ∧ { 𝑀 , 𝑁 } ∈ 𝐸 ) → ( 𝑀𝑉𝑁𝑉 ) )