Step |
Hyp |
Ref |
Expression |
1 |
|
upgrres.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
upgrres.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
3 |
|
upgrres.f |
⊢ 𝐹 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } |
4 |
|
upgrres.s |
⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐸 ↾ 𝐹 ) 〉 |
5 |
1 2
|
usgrf |
⊢ ( 𝐺 ∈ USGraph → 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
6 |
3
|
ssrab3 |
⊢ 𝐹 ⊆ dom 𝐸 |
7 |
6
|
a1i |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 ⊆ dom 𝐸 ) |
8 |
|
f1ssres |
⊢ ( ( 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ 𝐹 ⊆ dom 𝐸 ) → ( 𝐸 ↾ 𝐹 ) : 𝐹 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
9 |
5 7 8
|
syl2an2r |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ↾ 𝐹 ) : 𝐹 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
10 |
|
usgrumgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph ) |
11 |
1 2 3
|
umgrreslem |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉 ) → ran ( 𝐸 ↾ 𝐹 ) ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
12 |
10 11
|
sylan |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ran ( 𝐸 ↾ 𝐹 ) ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
13 |
|
f1ssr |
⊢ ( ( ( 𝐸 ↾ 𝐹 ) : 𝐹 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ ran ( 𝐸 ↾ 𝐹 ) ⊆ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) → ( 𝐸 ↾ 𝐹 ) : 𝐹 –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
14 |
9 12 13
|
syl2anc |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ↾ 𝐹 ) : 𝐹 –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
15 |
|
ssdmres |
⊢ ( 𝐹 ⊆ dom 𝐸 ↔ dom ( 𝐸 ↾ 𝐹 ) = 𝐹 ) |
16 |
6 15
|
mpbi |
⊢ dom ( 𝐸 ↾ 𝐹 ) = 𝐹 |
17 |
|
f1eq2 |
⊢ ( dom ( 𝐸 ↾ 𝐹 ) = 𝐹 → ( ( 𝐸 ↾ 𝐹 ) : dom ( 𝐸 ↾ 𝐹 ) –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ↔ ( 𝐸 ↾ 𝐹 ) : 𝐹 –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) ) |
18 |
16 17
|
ax-mp |
⊢ ( ( 𝐸 ↾ 𝐹 ) : dom ( 𝐸 ↾ 𝐹 ) –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ↔ ( 𝐸 ↾ 𝐹 ) : 𝐹 –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
19 |
14 18
|
sylibr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ↾ 𝐹 ) : dom ( 𝐸 ↾ 𝐹 ) –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |
20 |
|
opex |
⊢ 〈 ( 𝑉 ∖ { 𝑁 } ) , ( 𝐸 ↾ 𝐹 ) 〉 ∈ V |
21 |
4 20
|
eqeltri |
⊢ 𝑆 ∈ V |
22 |
1 2 3 4
|
uhgrspan1lem2 |
⊢ ( Vtx ‘ 𝑆 ) = ( 𝑉 ∖ { 𝑁 } ) |
23 |
22
|
eqcomi |
⊢ ( 𝑉 ∖ { 𝑁 } ) = ( Vtx ‘ 𝑆 ) |
24 |
1 2 3 4
|
uhgrspan1lem3 |
⊢ ( iEdg ‘ 𝑆 ) = ( 𝐸 ↾ 𝐹 ) |
25 |
24
|
eqcomi |
⊢ ( 𝐸 ↾ 𝐹 ) = ( iEdg ‘ 𝑆 ) |
26 |
23 25
|
isusgrs |
⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ USGraph ↔ ( 𝐸 ↾ 𝐹 ) : dom ( 𝐸 ↾ 𝐹 ) –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) ) |
27 |
21 26
|
mp1i |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑆 ∈ USGraph ↔ ( 𝐸 ↾ 𝐹 ) : dom ( 𝐸 ↾ 𝐹 ) –1-1→ { 𝑝 ∈ 𝒫 ( 𝑉 ∖ { 𝑁 } ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) ) |
28 |
19 27
|
mpbird |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑆 ∈ USGraph ) |