Metamath Proof Explorer


Theorem usgrspan

Description: A spanning subgraph S of a simple graph G is a simple graph. (Contributed by AV, 15-Oct-2020) (Revised by AV, 16-Oct-2020) (Proof shortened by AV, 18-Nov-2020)

Ref Expression
Hypotheses uhgrspan.v 𝑉 = ( Vtx ‘ 𝐺 )
uhgrspan.e 𝐸 = ( iEdg ‘ 𝐺 )
uhgrspan.s ( 𝜑𝑆𝑊 )
uhgrspan.q ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 )
uhgrspan.r ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐸𝐴 ) )
usgrspan.g ( 𝜑𝐺 ∈ USGraph )
Assertion usgrspan ( 𝜑𝑆 ∈ USGraph )

Proof

Step Hyp Ref Expression
1 uhgrspan.v 𝑉 = ( Vtx ‘ 𝐺 )
2 uhgrspan.e 𝐸 = ( iEdg ‘ 𝐺 )
3 uhgrspan.s ( 𝜑𝑆𝑊 )
4 uhgrspan.q ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 )
5 uhgrspan.r ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐸𝐴 ) )
6 usgrspan.g ( 𝜑𝐺 ∈ USGraph )
7 usgruhgr ( 𝐺 ∈ USGraph → 𝐺 ∈ UHGraph )
8 6 7 syl ( 𝜑𝐺 ∈ UHGraph )
9 1 2 3 4 5 8 uhgrspansubgr ( 𝜑𝑆 SubGraph 𝐺 )
10 subusgr ( ( 𝐺 ∈ USGraph ∧ 𝑆 SubGraph 𝐺 ) → 𝑆 ∈ USGraph )
11 6 9 10 syl2anc ( 𝜑𝑆 ∈ USGraph )