| Step | Hyp | Ref | Expression | 
						
							| 1 |  | usgrf1o.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 2 |  | usgrss.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 3 |  | ssrab2 | ⊢ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  ⊆  𝒫  𝑉 | 
						
							| 4 | 2 1 | usgrfs | ⊢ ( 𝐺  ∈  USGraph  →  𝐸 : dom  𝐸 –1-1→ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 5 |  | f1f | ⊢ ( 𝐸 : dom  𝐸 –1-1→ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 }  →  𝐸 : dom  𝐸 ⟶ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝐺  ∈  USGraph  →  𝐸 : dom  𝐸 ⟶ { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 7 | 6 | ffvelcdmda | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑋  ∈  dom  𝐸 )  →  ( 𝐸 ‘ 𝑋 )  ∈  { 𝑥  ∈  𝒫  𝑉  ∣  ( ♯ ‘ 𝑥 )  =  2 } ) | 
						
							| 8 | 3 7 | sselid | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑋  ∈  dom  𝐸 )  →  ( 𝐸 ‘ 𝑋 )  ∈  𝒫  𝑉 ) | 
						
							| 9 | 8 | elpwid | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑋  ∈  dom  𝐸 )  →  ( 𝐸 ‘ 𝑋 )  ⊆  𝑉 ) |