Step |
Hyp |
Ref |
Expression |
1 |
|
usgrf1o.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
2 |
|
usgrss.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
3 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ⊆ 𝒫 𝑉 |
4 |
2 1
|
usgrfs |
⊢ ( 𝐺 ∈ USGraph → 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
5 |
|
f1f |
⊢ ( 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
6 |
4 5
|
syl |
⊢ ( 𝐺 ∈ USGraph → 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
7 |
6
|
ffvelrnda |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑋 ) ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
8 |
3 7
|
sselid |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑋 ) ∈ 𝒫 𝑉 ) |
9 |
8
|
elpwid |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑋 ) ⊆ 𝑉 ) |