Step |
Hyp |
Ref |
Expression |
1 |
|
usgrumgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph ) |
2 |
|
usgruspgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ USPGraph ) |
3 |
1 2
|
jca |
⊢ ( 𝐺 ∈ USGraph → ( 𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph ) ) |
4 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
5 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
6 |
4 5
|
uspgrf |
⊢ ( 𝐺 ∈ USPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
7 |
|
umgredgss |
⊢ ( 𝐺 ∈ UMGraph → ( Edg ‘ 𝐺 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
8 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
9 |
|
prprrab |
⊢ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } |
10 |
9
|
eqcomi |
⊢ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } |
11 |
7 8 10
|
3sstr3g |
⊢ ( 𝐺 ∈ UMGraph → ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
12 |
|
f1ssr |
⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∧ ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
13 |
6 11 12
|
syl2anr |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
14 |
4 5
|
isusgr |
⊢ ( 𝐺 ∈ UMGraph → ( 𝐺 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph ) → ( 𝐺 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
16 |
13 15
|
mpbird |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph ) → 𝐺 ∈ USGraph ) |
17 |
3 16
|
impbii |
⊢ ( 𝐺 ∈ USGraph ↔ ( 𝐺 ∈ UMGraph ∧ 𝐺 ∈ USPGraph ) ) |