Metamath Proof Explorer


Theorem usgrun

Description: The union U of two simple graphs G and H with the same vertex set V is a multigraph (not necessarily a simple graph!) with the vertex V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 29-Nov-2020)

Ref Expression
Hypotheses usgrun.g ( 𝜑𝐺 ∈ USGraph )
usgrun.h ( 𝜑𝐻 ∈ USGraph )
usgrun.e 𝐸 = ( iEdg ‘ 𝐺 )
usgrun.f 𝐹 = ( iEdg ‘ 𝐻 )
usgrun.vg 𝑉 = ( Vtx ‘ 𝐺 )
usgrun.vh ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 )
usgrun.i ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ )
usgrun.u ( 𝜑𝑈𝑊 )
usgrun.v ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 )
usgrun.un ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐸𝐹 ) )
Assertion usgrun ( 𝜑𝑈 ∈ UMGraph )

Proof

Step Hyp Ref Expression
1 usgrun.g ( 𝜑𝐺 ∈ USGraph )
2 usgrun.h ( 𝜑𝐻 ∈ USGraph )
3 usgrun.e 𝐸 = ( iEdg ‘ 𝐺 )
4 usgrun.f 𝐹 = ( iEdg ‘ 𝐻 )
5 usgrun.vg 𝑉 = ( Vtx ‘ 𝐺 )
6 usgrun.vh ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 )
7 usgrun.i ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ )
8 usgrun.u ( 𝜑𝑈𝑊 )
9 usgrun.v ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 )
10 usgrun.un ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐸𝐹 ) )
11 usgrumgr ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph )
12 1 11 syl ( 𝜑𝐺 ∈ UMGraph )
13 usgrumgr ( 𝐻 ∈ USGraph → 𝐻 ∈ UMGraph )
14 2 13 syl ( 𝜑𝐻 ∈ UMGraph )
15 12 14 3 4 5 6 7 8 9 10 umgrun ( 𝜑𝑈 ∈ UMGraph )