Metamath Proof Explorer


Theorem usgrunop

Description: The union of two simple graphs (with the same vertex set): If <. V , E >. and <. V , F >. are simple graphs, then <. V , E u. F >. is a multigraph (not necessarily a simple graph!) - the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices. (Contributed by AV, 29-Nov-2020)

Ref Expression
Hypotheses usgrun.g ( 𝜑𝐺 ∈ USGraph )
usgrun.h ( 𝜑𝐻 ∈ USGraph )
usgrun.e 𝐸 = ( iEdg ‘ 𝐺 )
usgrun.f 𝐹 = ( iEdg ‘ 𝐻 )
usgrun.vg 𝑉 = ( Vtx ‘ 𝐺 )
usgrun.vh ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 )
usgrun.i ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ )
Assertion usgrunop ( 𝜑 → ⟨ 𝑉 , ( 𝐸𝐹 ) ⟩ ∈ UMGraph )

Proof

Step Hyp Ref Expression
1 usgrun.g ( 𝜑𝐺 ∈ USGraph )
2 usgrun.h ( 𝜑𝐻 ∈ USGraph )
3 usgrun.e 𝐸 = ( iEdg ‘ 𝐺 )
4 usgrun.f 𝐹 = ( iEdg ‘ 𝐻 )
5 usgrun.vg 𝑉 = ( Vtx ‘ 𝐺 )
6 usgrun.vh ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 )
7 usgrun.i ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ )
8 usgrumgr ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph )
9 1 8 syl ( 𝜑𝐺 ∈ UMGraph )
10 usgrumgr ( 𝐻 ∈ USGraph → 𝐻 ∈ UMGraph )
11 2 10 syl ( 𝜑𝐻 ∈ UMGraph )
12 9 11 3 4 5 6 7 umgrunop ( 𝜑 → ⟨ 𝑉 , ( 𝐸𝐹 ) ⟩ ∈ UMGraph )