Step |
Hyp |
Ref |
Expression |
1 |
|
usgruspgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ USPGraph ) |
2 |
|
edgusgr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑒 ) = 2 ) ) |
3 |
2
|
simprd |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( ♯ ‘ 𝑒 ) = 2 ) |
4 |
3
|
ralrimiva |
⊢ ( 𝐺 ∈ USGraph → ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) |
5 |
1 4
|
jca |
⊢ ( 𝐺 ∈ USGraph → ( 𝐺 ∈ USPGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) ) |
6 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
7 |
6
|
a1i |
⊢ ( 𝐺 ∈ USPGraph → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
8 |
7
|
raleqdv |
⊢ ( 𝐺 ∈ USPGraph → ( ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ↔ ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) ) |
9 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
10 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
11 |
9 10
|
uspgrf |
⊢ ( 𝐺 ∈ USPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
12 |
|
f1f |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
13 |
12
|
frnd |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
14 |
|
ssel2 |
⊢ ( ( ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∧ 𝑦 ∈ ran ( iEdg ‘ 𝐺 ) ) → 𝑦 ∈ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
15 |
14
|
expcom |
⊢ ( 𝑦 ∈ ran ( iEdg ‘ 𝐺 ) → ( ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → 𝑦 ∈ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
16 |
|
fveqeq2 |
⊢ ( 𝑒 = 𝑦 → ( ( ♯ ‘ 𝑒 ) = 2 ↔ ( ♯ ‘ 𝑦 ) = 2 ) ) |
17 |
16
|
rspcv |
⊢ ( 𝑦 ∈ ran ( iEdg ‘ 𝐺 ) → ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 → ( ♯ ‘ 𝑦 ) = 2 ) ) |
18 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) |
19 |
18
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ 𝑥 ) ≤ 2 ↔ ( ♯ ‘ 𝑦 ) ≤ 2 ) ) |
20 |
19
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ ( 𝑦 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ ( ♯ ‘ 𝑦 ) ≤ 2 ) ) |
21 |
|
eldifi |
⊢ ( 𝑦 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → 𝑦 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ) |
22 |
21
|
anim1i |
⊢ ( ( 𝑦 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ ( ♯ ‘ 𝑦 ) = 2 ) → ( 𝑦 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = 2 ) ) |
23 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ 𝑥 ) = 2 ↔ ( ♯ ‘ 𝑦 ) = 2 ) ) |
24 |
23
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( 𝑦 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = 2 ) ) |
25 |
22 24
|
sylibr |
⊢ ( ( 𝑦 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ ( ♯ ‘ 𝑦 ) = 2 ) → 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
26 |
25
|
ex |
⊢ ( 𝑦 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → ( ( ♯ ‘ 𝑦 ) = 2 → 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
27 |
26
|
adantr |
⊢ ( ( 𝑦 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ ( ♯ ‘ 𝑦 ) ≤ 2 ) → ( ( ♯ ‘ 𝑦 ) = 2 → 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
28 |
20 27
|
sylbi |
⊢ ( 𝑦 ∈ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( ( ♯ ‘ 𝑦 ) = 2 → 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
29 |
17 28
|
syl9 |
⊢ ( 𝑦 ∈ ran ( iEdg ‘ 𝐺 ) → ( 𝑦 ∈ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 → 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
30 |
15 29
|
syld |
⊢ ( 𝑦 ∈ ran ( iEdg ‘ 𝐺 ) → ( ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 → 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
31 |
30
|
com13 |
⊢ ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 → ( ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( 𝑦 ∈ ran ( iEdg ‘ 𝐺 ) → 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
32 |
31
|
imp |
⊢ ( ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ∧ ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) → ( 𝑦 ∈ ran ( iEdg ‘ 𝐺 ) → 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
33 |
32
|
ssrdv |
⊢ ( ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ∧ ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) → ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
34 |
33
|
ex |
⊢ ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 → ( ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
35 |
13 34
|
mpan9 |
⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∧ ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) → ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
36 |
|
f1ssr |
⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∧ ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
37 |
35 36
|
syldan |
⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∧ ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
38 |
37
|
ex |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
39 |
11 38
|
syl |
⊢ ( 𝐺 ∈ USPGraph → ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
40 |
8 39
|
sylbid |
⊢ ( 𝐺 ∈ USPGraph → ( ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
41 |
40
|
imp |
⊢ ( ( 𝐺 ∈ USPGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
42 |
9 10
|
isusgrs |
⊢ ( 𝐺 ∈ USPGraph → ( 𝐺 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
43 |
42
|
adantr |
⊢ ( ( 𝐺 ∈ USPGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) → ( 𝐺 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
44 |
41 43
|
mpbird |
⊢ ( ( 𝐺 ∈ USPGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) → 𝐺 ∈ USGraph ) |
45 |
5 44
|
impbii |
⊢ ( 𝐺 ∈ USGraph ↔ ( 𝐺 ∈ USPGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) ) |