Step |
Hyp |
Ref |
Expression |
1 |
|
ushgredgedg.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
2 |
|
ushgredgedg.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
ushgredgedg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
4 |
|
ushgredgedg.a |
⊢ 𝐴 = { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } |
5 |
|
ushgredgedg.b |
⊢ 𝐵 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } |
6 |
|
ushgredgedg.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐼 ‘ 𝑥 ) ) |
7 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
8 |
7 2
|
ushgrf |
⊢ ( 𝐺 ∈ USHGraph → 𝐼 : dom 𝐼 –1-1→ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐼 : dom 𝐼 –1-1→ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
10 |
|
ssrab2 |
⊢ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ⊆ dom 𝐼 |
11 |
|
f1ores |
⊢ ( ( 𝐼 : dom 𝐼 –1-1→ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ⊆ dom 𝐼 ) → ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) : { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } –1-1-onto→ ( 𝐼 “ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) ) |
12 |
9 10 11
|
sylancl |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) : { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } –1-1-onto→ ( 𝐼 “ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) ) |
13 |
4
|
a1i |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐴 = { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) |
14 |
|
eqidd |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ) |
15 |
13 14
|
mpteq12dva |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐴 ↦ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ↦ ( 𝐼 ‘ 𝑥 ) ) ) |
16 |
6 15
|
eqtrid |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 = ( 𝑥 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ↦ ( 𝐼 ‘ 𝑥 ) ) ) |
17 |
|
f1f |
⊢ ( 𝐼 : dom 𝐼 –1-1→ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → 𝐼 : dom 𝐼 ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
18 |
8 17
|
syl |
⊢ ( 𝐺 ∈ USHGraph → 𝐼 : dom 𝐼 ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
19 |
10
|
a1i |
⊢ ( 𝐺 ∈ USHGraph → { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ⊆ dom 𝐼 ) |
20 |
18 19
|
feqresmpt |
⊢ ( 𝐺 ∈ USHGraph → ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) = ( 𝑥 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ↦ ( 𝐼 ‘ 𝑥 ) ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) = ( 𝑥 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ↦ ( 𝐼 ‘ 𝑥 ) ) ) |
22 |
21
|
eqcomd |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑥 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ↦ ( 𝐼 ‘ 𝑥 ) ) = ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) ) |
23 |
16 22
|
eqtrd |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 = ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) ) |
24 |
|
ushgruhgr |
⊢ ( 𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph ) |
25 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
26 |
25
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
27 |
24 26
|
syl |
⊢ ( 𝐺 ∈ USHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
28 |
2
|
funeqi |
⊢ ( Fun 𝐼 ↔ Fun ( iEdg ‘ 𝐺 ) ) |
29 |
27 28
|
sylibr |
⊢ ( 𝐺 ∈ USHGraph → Fun 𝐼 ) |
30 |
29
|
adantr |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → Fun 𝐼 ) |
31 |
|
dfimafn |
⊢ ( ( Fun 𝐼 ∧ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ⊆ dom 𝐼 ) → ( 𝐼 “ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) = { 𝑒 ∣ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑒 } ) |
32 |
30 10 31
|
sylancl |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐼 “ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) = { 𝑒 ∣ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑒 } ) |
33 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐼 ‘ 𝑖 ) = ( 𝐼 ‘ 𝑗 ) ) |
34 |
33
|
eleq2d |
⊢ ( 𝑖 = 𝑗 → ( 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) ↔ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ) |
35 |
34
|
elrab |
⊢ ( 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ↔ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ) |
36 |
|
simpl |
⊢ ( ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) → 𝑗 ∈ dom 𝐼 ) |
37 |
|
fvelrn |
⊢ ( ( Fun 𝐼 ∧ 𝑗 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑗 ) ∈ ran 𝐼 ) |
38 |
2
|
eqcomi |
⊢ ( iEdg ‘ 𝐺 ) = 𝐼 |
39 |
38
|
rneqi |
⊢ ran ( iEdg ‘ 𝐺 ) = ran 𝐼 |
40 |
39
|
eleq2i |
⊢ ( ( 𝐼 ‘ 𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) ↔ ( 𝐼 ‘ 𝑗 ) ∈ ran 𝐼 ) |
41 |
37 40
|
sylibr |
⊢ ( ( Fun 𝐼 ∧ 𝑗 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) ) |
42 |
30 36 41
|
syl2an |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ) → ( 𝐼 ‘ 𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) ) |
43 |
42
|
3adant3 |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) → ( 𝐼 ‘ 𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) ) |
44 |
|
eleq1 |
⊢ ( 𝑓 = ( 𝐼 ‘ 𝑗 ) → ( 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ↔ ( 𝐼 ‘ 𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) ) ) |
45 |
44
|
eqcoms |
⊢ ( ( 𝐼 ‘ 𝑗 ) = 𝑓 → ( 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ↔ ( 𝐼 ‘ 𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) ) ) |
46 |
45
|
3ad2ant3 |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) → ( 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ↔ ( 𝐼 ‘ 𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) ) ) |
47 |
43 46
|
mpbird |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) → 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ) |
48 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
49 |
48
|
a1i |
⊢ ( 𝐺 ∈ USHGraph → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
50 |
1 49
|
eqtrid |
⊢ ( 𝐺 ∈ USHGraph → 𝐸 = ran ( iEdg ‘ 𝐺 ) ) |
51 |
50
|
eleq2d |
⊢ ( 𝐺 ∈ USHGraph → ( 𝑓 ∈ 𝐸 ↔ 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑓 ∈ 𝐸 ↔ 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ) ) |
53 |
52
|
3ad2ant1 |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) → ( 𝑓 ∈ 𝐸 ↔ 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ) ) |
54 |
47 53
|
mpbird |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) → 𝑓 ∈ 𝐸 ) |
55 |
|
eleq2 |
⊢ ( ( 𝐼 ‘ 𝑗 ) = 𝑓 → ( 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ↔ 𝑁 ∈ 𝑓 ) ) |
56 |
55
|
biimpcd |
⊢ ( 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) → ( ( 𝐼 ‘ 𝑗 ) = 𝑓 → 𝑁 ∈ 𝑓 ) ) |
57 |
56
|
adantl |
⊢ ( ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) → ( ( 𝐼 ‘ 𝑗 ) = 𝑓 → 𝑁 ∈ 𝑓 ) ) |
58 |
57
|
a1i |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) → ( ( 𝐼 ‘ 𝑗 ) = 𝑓 → 𝑁 ∈ 𝑓 ) ) ) |
59 |
58
|
3imp |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) → 𝑁 ∈ 𝑓 ) |
60 |
54 59
|
jca |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) → ( 𝑓 ∈ 𝐸 ∧ 𝑁 ∈ 𝑓 ) ) |
61 |
60
|
3exp |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) → ( ( 𝐼 ‘ 𝑗 ) = 𝑓 → ( 𝑓 ∈ 𝐸 ∧ 𝑁 ∈ 𝑓 ) ) ) ) |
62 |
35 61
|
syl5bi |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } → ( ( 𝐼 ‘ 𝑗 ) = 𝑓 → ( 𝑓 ∈ 𝐸 ∧ 𝑁 ∈ 𝑓 ) ) ) ) |
63 |
62
|
rexlimdv |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑓 → ( 𝑓 ∈ 𝐸 ∧ 𝑁 ∈ 𝑓 ) ) ) |
64 |
27
|
funfnd |
⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
65 |
|
fvelrnb |
⊢ ( ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) → ( 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) |
66 |
64 65
|
syl |
⊢ ( 𝐺 ∈ USHGraph → ( 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) |
67 |
38
|
dmeqi |
⊢ dom ( iEdg ‘ 𝐺 ) = dom 𝐼 |
68 |
67
|
eleq2i |
⊢ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ↔ 𝑗 ∈ dom 𝐼 ) |
69 |
68
|
biimpi |
⊢ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) → 𝑗 ∈ dom 𝐼 ) |
70 |
69
|
adantr |
⊢ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) → 𝑗 ∈ dom 𝐼 ) |
71 |
70
|
adantl |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓 ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) → 𝑗 ∈ dom 𝐼 ) |
72 |
38
|
fveq1i |
⊢ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = ( 𝐼 ‘ 𝑗 ) |
73 |
72
|
eqeq2i |
⊢ ( 𝑓 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ↔ 𝑓 = ( 𝐼 ‘ 𝑗 ) ) |
74 |
73
|
biimpi |
⊢ ( 𝑓 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → 𝑓 = ( 𝐼 ‘ 𝑗 ) ) |
75 |
74
|
eqcoms |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → 𝑓 = ( 𝐼 ‘ 𝑗 ) ) |
76 |
75
|
eleq2d |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → ( 𝑁 ∈ 𝑓 ↔ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ) |
77 |
76
|
biimpcd |
⊢ ( 𝑁 ∈ 𝑓 → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ) |
78 |
77
|
adantl |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓 ) → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ) |
79 |
78
|
adantld |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓 ) → ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) → 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ) |
80 |
79
|
imp |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓 ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) → 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) |
81 |
71 80
|
jca |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓 ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) → ( 𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑗 ) ) ) |
82 |
81 35
|
sylibr |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓 ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) → 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) |
83 |
72
|
eqeq1i |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ↔ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) |
84 |
83
|
biimpi |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → ( 𝐼 ‘ 𝑗 ) = 𝑓 ) |
85 |
84
|
adantl |
⊢ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) → ( 𝐼 ‘ 𝑗 ) = 𝑓 ) |
86 |
85
|
adantl |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓 ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) → ( 𝐼 ‘ 𝑗 ) = 𝑓 ) |
87 |
82 86
|
jca |
⊢ ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓 ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) → ( 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) |
88 |
87
|
ex |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓 ) → ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) → ( 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ∧ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) ) |
89 |
88
|
reximdv2 |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓 ) → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) |
90 |
89
|
ex |
⊢ ( 𝐺 ∈ USHGraph → ( 𝑁 ∈ 𝑓 → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) ) |
91 |
90
|
com23 |
⊢ ( 𝐺 ∈ USHGraph → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → ( 𝑁 ∈ 𝑓 → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) ) |
92 |
66 91
|
sylbid |
⊢ ( 𝐺 ∈ USHGraph → ( 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) → ( 𝑁 ∈ 𝑓 → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) ) |
93 |
51 92
|
sylbid |
⊢ ( 𝐺 ∈ USHGraph → ( 𝑓 ∈ 𝐸 → ( 𝑁 ∈ 𝑓 → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) ) |
94 |
93
|
impd |
⊢ ( 𝐺 ∈ USHGraph → ( ( 𝑓 ∈ 𝐸 ∧ 𝑁 ∈ 𝑓 ) → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) |
95 |
94
|
adantr |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( ( 𝑓 ∈ 𝐸 ∧ 𝑁 ∈ 𝑓 ) → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) |
96 |
63 95
|
impbid |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑓 ↔ ( 𝑓 ∈ 𝐸 ∧ 𝑁 ∈ 𝑓 ) ) ) |
97 |
|
vex |
⊢ 𝑓 ∈ V |
98 |
|
eqeq2 |
⊢ ( 𝑒 = 𝑓 → ( ( 𝐼 ‘ 𝑗 ) = 𝑒 ↔ ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) |
99 |
98
|
rexbidv |
⊢ ( 𝑒 = 𝑓 → ( ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑒 ↔ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) ) |
100 |
97 99
|
elab |
⊢ ( 𝑓 ∈ { 𝑒 ∣ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑒 } ↔ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑓 ) |
101 |
|
eleq2 |
⊢ ( 𝑒 = 𝑓 → ( 𝑁 ∈ 𝑒 ↔ 𝑁 ∈ 𝑓 ) ) |
102 |
101 5
|
elrab2 |
⊢ ( 𝑓 ∈ 𝐵 ↔ ( 𝑓 ∈ 𝐸 ∧ 𝑁 ∈ 𝑓 ) ) |
103 |
96 100 102
|
3bitr4g |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑓 ∈ { 𝑒 ∣ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑒 } ↔ 𝑓 ∈ 𝐵 ) ) |
104 |
103
|
eqrdv |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → { 𝑒 ∣ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ( 𝐼 ‘ 𝑗 ) = 𝑒 } = 𝐵 ) |
105 |
32 104
|
eqtrd |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐼 “ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) = 𝐵 ) |
106 |
105
|
eqcomd |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐵 = ( 𝐼 “ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) ) |
107 |
23 13 106
|
f1oeq123d |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) : { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } –1-1-onto→ ( 𝐼 “ { 𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑖 ) } ) ) ) |
108 |
12 107
|
mpbird |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |