Metamath Proof Explorer


Theorem ushgredgedg

Description: In a simple hypergraph there is a 1-1 onto mapping between the indexed edges containing a fixed vertex and the set of edges containing this vertex. (Contributed by AV, 11-Dec-2020)

Ref Expression
Hypotheses ushgredgedg.e 𝐸 = ( Edg ‘ 𝐺 )
ushgredgedg.i 𝐼 = ( iEdg ‘ 𝐺 )
ushgredgedg.v 𝑉 = ( Vtx ‘ 𝐺 )
ushgredgedg.a 𝐴 = { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) }
ushgredgedg.b 𝐵 = { 𝑒𝐸𝑁𝑒 }
ushgredgedg.f 𝐹 = ( 𝑥𝐴 ↦ ( 𝐼𝑥 ) )
Assertion ushgredgedg ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) → 𝐹 : 𝐴1-1-onto𝐵 )

Proof

Step Hyp Ref Expression
1 ushgredgedg.e 𝐸 = ( Edg ‘ 𝐺 )
2 ushgredgedg.i 𝐼 = ( iEdg ‘ 𝐺 )
3 ushgredgedg.v 𝑉 = ( Vtx ‘ 𝐺 )
4 ushgredgedg.a 𝐴 = { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) }
5 ushgredgedg.b 𝐵 = { 𝑒𝐸𝑁𝑒 }
6 ushgredgedg.f 𝐹 = ( 𝑥𝐴 ↦ ( 𝐼𝑥 ) )
7 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
8 7 2 ushgrf ( 𝐺 ∈ USHGraph → 𝐼 : dom 𝐼1-1→ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) )
9 8 adantr ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) → 𝐼 : dom 𝐼1-1→ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) )
10 ssrab2 { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ⊆ dom 𝐼
11 f1ores ( ( 𝐼 : dom 𝐼1-1→ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ⊆ dom 𝐼 ) → ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ) : { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } –1-1-onto→ ( 𝐼 “ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ) )
12 9 10 11 sylancl ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) → ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ) : { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } –1-1-onto→ ( 𝐼 “ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ) )
13 4 a1i ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) → 𝐴 = { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } )
14 eqidd ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) ∧ 𝑥𝐴 ) → ( 𝐼𝑥 ) = ( 𝐼𝑥 ) )
15 13 14 mpteq12dva ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) → ( 𝑥𝐴 ↦ ( 𝐼𝑥 ) ) = ( 𝑥 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ↦ ( 𝐼𝑥 ) ) )
16 6 15 eqtrid ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) → 𝐹 = ( 𝑥 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ↦ ( 𝐼𝑥 ) ) )
17 f1f ( 𝐼 : dom 𝐼1-1→ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → 𝐼 : dom 𝐼 ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) )
18 8 17 syl ( 𝐺 ∈ USHGraph → 𝐼 : dom 𝐼 ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) )
19 10 a1i ( 𝐺 ∈ USHGraph → { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ⊆ dom 𝐼 )
20 18 19 feqresmpt ( 𝐺 ∈ USHGraph → ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ) = ( 𝑥 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ↦ ( 𝐼𝑥 ) ) )
21 20 adantr ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) → ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ) = ( 𝑥 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ↦ ( 𝐼𝑥 ) ) )
22 21 eqcomd ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) → ( 𝑥 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ↦ ( 𝐼𝑥 ) ) = ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ) )
23 16 22 eqtrd ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) → 𝐹 = ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ) )
24 ushgruhgr ( 𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph )
25 eqid ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 )
26 25 uhgrfun ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) )
27 24 26 syl ( 𝐺 ∈ USHGraph → Fun ( iEdg ‘ 𝐺 ) )
28 2 funeqi ( Fun 𝐼 ↔ Fun ( iEdg ‘ 𝐺 ) )
29 27 28 sylibr ( 𝐺 ∈ USHGraph → Fun 𝐼 )
30 29 adantr ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) → Fun 𝐼 )
31 dfimafn ( ( Fun 𝐼 ∧ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ⊆ dom 𝐼 ) → ( 𝐼 “ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ) = { 𝑒 ∣ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ( 𝐼𝑗 ) = 𝑒 } )
32 30 10 31 sylancl ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) → ( 𝐼 “ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ) = { 𝑒 ∣ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ( 𝐼𝑗 ) = 𝑒 } )
33 fveq2 ( 𝑖 = 𝑗 → ( 𝐼𝑖 ) = ( 𝐼𝑗 ) )
34 33 eleq2d ( 𝑖 = 𝑗 → ( 𝑁 ∈ ( 𝐼𝑖 ) ↔ 𝑁 ∈ ( 𝐼𝑗 ) ) )
35 34 elrab ( 𝑗 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ↔ ( 𝑗 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑗 ) ) )
36 simpl ( ( 𝑗 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑗 ) ) → 𝑗 ∈ dom 𝐼 )
37 fvelrn ( ( Fun 𝐼𝑗 ∈ dom 𝐼 ) → ( 𝐼𝑗 ) ∈ ran 𝐼 )
38 2 eqcomi ( iEdg ‘ 𝐺 ) = 𝐼
39 38 rneqi ran ( iEdg ‘ 𝐺 ) = ran 𝐼
40 39 eleq2i ( ( 𝐼𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) ↔ ( 𝐼𝑗 ) ∈ ran 𝐼 )
41 37 40 sylibr ( ( Fun 𝐼𝑗 ∈ dom 𝐼 ) → ( 𝐼𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) )
42 30 36 41 syl2an ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑗 ) ) ) → ( 𝐼𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) )
43 42 3adant3 ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑗 ) ) ∧ ( 𝐼𝑗 ) = 𝑓 ) → ( 𝐼𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) )
44 eleq1 ( 𝑓 = ( 𝐼𝑗 ) → ( 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ↔ ( 𝐼𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) ) )
45 44 eqcoms ( ( 𝐼𝑗 ) = 𝑓 → ( 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ↔ ( 𝐼𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) ) )
46 45 3ad2ant3 ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑗 ) ) ∧ ( 𝐼𝑗 ) = 𝑓 ) → ( 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ↔ ( 𝐼𝑗 ) ∈ ran ( iEdg ‘ 𝐺 ) ) )
47 43 46 mpbird ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑗 ) ) ∧ ( 𝐼𝑗 ) = 𝑓 ) → 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) )
48 edgval ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 )
49 48 a1i ( 𝐺 ∈ USHGraph → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) )
50 1 49 eqtrid ( 𝐺 ∈ USHGraph → 𝐸 = ran ( iEdg ‘ 𝐺 ) )
51 50 eleq2d ( 𝐺 ∈ USHGraph → ( 𝑓𝐸𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ) )
52 51 adantr ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) → ( 𝑓𝐸𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ) )
53 52 3ad2ant1 ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑗 ) ) ∧ ( 𝐼𝑗 ) = 𝑓 ) → ( 𝑓𝐸𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ) )
54 47 53 mpbird ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑗 ) ) ∧ ( 𝐼𝑗 ) = 𝑓 ) → 𝑓𝐸 )
55 eleq2 ( ( 𝐼𝑗 ) = 𝑓 → ( 𝑁 ∈ ( 𝐼𝑗 ) ↔ 𝑁𝑓 ) )
56 55 biimpcd ( 𝑁 ∈ ( 𝐼𝑗 ) → ( ( 𝐼𝑗 ) = 𝑓𝑁𝑓 ) )
57 56 adantl ( ( 𝑗 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑗 ) ) → ( ( 𝐼𝑗 ) = 𝑓𝑁𝑓 ) )
58 57 a1i ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) → ( ( 𝑗 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑗 ) ) → ( ( 𝐼𝑗 ) = 𝑓𝑁𝑓 ) ) )
59 58 3imp ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑗 ) ) ∧ ( 𝐼𝑗 ) = 𝑓 ) → 𝑁𝑓 )
60 54 59 jca ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) ∧ ( 𝑗 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑗 ) ) ∧ ( 𝐼𝑗 ) = 𝑓 ) → ( 𝑓𝐸𝑁𝑓 ) )
61 60 3exp ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) → ( ( 𝑗 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑗 ) ) → ( ( 𝐼𝑗 ) = 𝑓 → ( 𝑓𝐸𝑁𝑓 ) ) ) )
62 35 61 syl5bi ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) → ( 𝑗 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } → ( ( 𝐼𝑗 ) = 𝑓 → ( 𝑓𝐸𝑁𝑓 ) ) ) )
63 62 rexlimdv ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) → ( ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ( 𝐼𝑗 ) = 𝑓 → ( 𝑓𝐸𝑁𝑓 ) ) )
64 27 funfnd ( 𝐺 ∈ USHGraph → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) )
65 fvelrnb ( ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) → ( 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) )
66 64 65 syl ( 𝐺 ∈ USHGraph → ( 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) )
67 38 dmeqi dom ( iEdg ‘ 𝐺 ) = dom 𝐼
68 67 eleq2i ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ↔ 𝑗 ∈ dom 𝐼 )
69 68 biimpi ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) → 𝑗 ∈ dom 𝐼 )
70 69 adantr ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) → 𝑗 ∈ dom 𝐼 )
71 70 adantl ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑓 ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) → 𝑗 ∈ dom 𝐼 )
72 38 fveq1i ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = ( 𝐼𝑗 )
73 72 eqeq2i ( 𝑓 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ↔ 𝑓 = ( 𝐼𝑗 ) )
74 73 biimpi ( 𝑓 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → 𝑓 = ( 𝐼𝑗 ) )
75 74 eqcoms ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓𝑓 = ( 𝐼𝑗 ) )
76 75 eleq2d ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → ( 𝑁𝑓𝑁 ∈ ( 𝐼𝑗 ) ) )
77 76 biimpcd ( 𝑁𝑓 → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓𝑁 ∈ ( 𝐼𝑗 ) ) )
78 77 adantl ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑓 ) → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓𝑁 ∈ ( 𝐼𝑗 ) ) )
79 78 adantld ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑓 ) → ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) → 𝑁 ∈ ( 𝐼𝑗 ) ) )
80 79 imp ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑓 ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) → 𝑁 ∈ ( 𝐼𝑗 ) )
81 71 80 jca ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑓 ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) → ( 𝑗 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑗 ) ) )
82 81 35 sylibr ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑓 ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) → 𝑗 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } )
83 72 eqeq1i ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ↔ ( 𝐼𝑗 ) = 𝑓 )
84 83 biimpi ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → ( 𝐼𝑗 ) = 𝑓 )
85 84 adantl ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) → ( 𝐼𝑗 ) = 𝑓 )
86 85 adantl ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑓 ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) → ( 𝐼𝑗 ) = 𝑓 )
87 82 86 jca ( ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑓 ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) ) → ( 𝑗 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ∧ ( 𝐼𝑗 ) = 𝑓 ) )
88 87 ex ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑓 ) → ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 ) → ( 𝑗 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ∧ ( 𝐼𝑗 ) = 𝑓 ) ) )
89 88 reximdv2 ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑓 ) → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ( 𝐼𝑗 ) = 𝑓 ) )
90 89 ex ( 𝐺 ∈ USHGraph → ( 𝑁𝑓 → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ( 𝐼𝑗 ) = 𝑓 ) ) )
91 90 com23 ( 𝐺 ∈ USHGraph → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = 𝑓 → ( 𝑁𝑓 → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ( 𝐼𝑗 ) = 𝑓 ) ) )
92 66 91 sylbid ( 𝐺 ∈ USHGraph → ( 𝑓 ∈ ran ( iEdg ‘ 𝐺 ) → ( 𝑁𝑓 → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ( 𝐼𝑗 ) = 𝑓 ) ) )
93 51 92 sylbid ( 𝐺 ∈ USHGraph → ( 𝑓𝐸 → ( 𝑁𝑓 → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ( 𝐼𝑗 ) = 𝑓 ) ) )
94 93 impd ( 𝐺 ∈ USHGraph → ( ( 𝑓𝐸𝑁𝑓 ) → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ( 𝐼𝑗 ) = 𝑓 ) )
95 94 adantr ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) → ( ( 𝑓𝐸𝑁𝑓 ) → ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ( 𝐼𝑗 ) = 𝑓 ) )
96 63 95 impbid ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) → ( ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ( 𝐼𝑗 ) = 𝑓 ↔ ( 𝑓𝐸𝑁𝑓 ) ) )
97 vex 𝑓 ∈ V
98 eqeq2 ( 𝑒 = 𝑓 → ( ( 𝐼𝑗 ) = 𝑒 ↔ ( 𝐼𝑗 ) = 𝑓 ) )
99 98 rexbidv ( 𝑒 = 𝑓 → ( ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ( 𝐼𝑗 ) = 𝑒 ↔ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ( 𝐼𝑗 ) = 𝑓 ) )
100 97 99 elab ( 𝑓 ∈ { 𝑒 ∣ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ( 𝐼𝑗 ) = 𝑒 } ↔ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ( 𝐼𝑗 ) = 𝑓 )
101 eleq2 ( 𝑒 = 𝑓 → ( 𝑁𝑒𝑁𝑓 ) )
102 101 5 elrab2 ( 𝑓𝐵 ↔ ( 𝑓𝐸𝑁𝑓 ) )
103 96 100 102 3bitr4g ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) → ( 𝑓 ∈ { 𝑒 ∣ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ( 𝐼𝑗 ) = 𝑒 } ↔ 𝑓𝐵 ) )
104 103 eqrdv ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) → { 𝑒 ∣ ∃ 𝑗 ∈ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ( 𝐼𝑗 ) = 𝑒 } = 𝐵 )
105 32 104 eqtrd ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) → ( 𝐼 “ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ) = 𝐵 )
106 105 eqcomd ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) → 𝐵 = ( 𝐼 “ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ) )
107 23 13 106 f1oeq123d ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) → ( 𝐹 : 𝐴1-1-onto𝐵 ↔ ( 𝐼 ↾ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ) : { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } –1-1-onto→ ( 𝐼 “ { 𝑖 ∈ dom 𝐼𝑁 ∈ ( 𝐼𝑖 ) } ) ) )
108 12 107 mpbird ( ( 𝐺 ∈ USHGraph ∧ 𝑁𝑉 ) → 𝐹 : 𝐴1-1-onto𝐵 )