| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ushgredgedgloop.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 2 |  | ushgredgedgloop.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | ushgredgedgloop.a | ⊢ 𝐴  =  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } | 
						
							| 4 |  | ushgredgedgloop.b | ⊢ 𝐵  =  { 𝑒  ∈  𝐸  ∣  𝑒  =  { 𝑁 } } | 
						
							| 5 |  | ushgredgedgloop.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐼 ‘ 𝑥 ) ) | 
						
							| 6 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 7 | 6 2 | ushgrf | ⊢ ( 𝐺  ∈  USHGraph  →  𝐼 : dom  𝐼 –1-1→ ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  →  𝐼 : dom  𝐼 –1-1→ ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } ) ) | 
						
							| 9 |  | ssrab2 | ⊢ { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } }  ⊆  dom  𝐼 | 
						
							| 10 |  | f1ores | ⊢ ( ( 𝐼 : dom  𝐼 –1-1→ ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ∧  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } }  ⊆  dom  𝐼 )  →  ( 𝐼  ↾  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ) : { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } –1-1-onto→ ( 𝐼  “  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ) ) | 
						
							| 11 | 8 9 10 | sylancl | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝐼  ↾  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ) : { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } –1-1-onto→ ( 𝐼  “  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ) ) | 
						
							| 12 | 3 | a1i | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  →  𝐴  =  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ) | 
						
							| 13 |  | eqidd | ⊢ ( ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐼 ‘ 𝑥 )  =  ( 𝐼 ‘ 𝑥 ) ) | 
						
							| 14 | 12 13 | mpteq12dva | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐼 ‘ 𝑥 ) )  =  ( 𝑥  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } }  ↦  ( 𝐼 ‘ 𝑥 ) ) ) | 
						
							| 15 | 5 14 | eqtrid | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  →  𝐹  =  ( 𝑥  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } }  ↦  ( 𝐼 ‘ 𝑥 ) ) ) | 
						
							| 16 |  | f1f | ⊢ ( 𝐼 : dom  𝐼 –1-1→ ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  →  𝐼 : dom  𝐼 ⟶ ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } ) ) | 
						
							| 17 | 7 16 | syl | ⊢ ( 𝐺  ∈  USHGraph  →  𝐼 : dom  𝐼 ⟶ ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } ) ) | 
						
							| 18 | 9 | a1i | ⊢ ( 𝐺  ∈  USHGraph  →  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } }  ⊆  dom  𝐼 ) | 
						
							| 19 | 17 18 | feqresmpt | ⊢ ( 𝐺  ∈  USHGraph  →  ( 𝐼  ↾  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } )  =  ( 𝑥  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } }  ↦  ( 𝐼 ‘ 𝑥 ) ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝐼  ↾  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } )  =  ( 𝑥  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } }  ↦  ( 𝐼 ‘ 𝑥 ) ) ) | 
						
							| 21 | 15 20 | eqtr4d | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  →  𝐹  =  ( 𝐼  ↾  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ) ) | 
						
							| 22 |  | ushgruhgr | ⊢ ( 𝐺  ∈  USHGraph  →  𝐺  ∈  UHGraph ) | 
						
							| 23 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 24 | 23 | uhgrfun | ⊢ ( 𝐺  ∈  UHGraph  →  Fun  ( iEdg ‘ 𝐺 ) ) | 
						
							| 25 | 22 24 | syl | ⊢ ( 𝐺  ∈  USHGraph  →  Fun  ( iEdg ‘ 𝐺 ) ) | 
						
							| 26 | 2 | funeqi | ⊢ ( Fun  𝐼  ↔  Fun  ( iEdg ‘ 𝐺 ) ) | 
						
							| 27 | 25 26 | sylibr | ⊢ ( 𝐺  ∈  USHGraph  →  Fun  𝐼 ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  →  Fun  𝐼 ) | 
						
							| 29 |  | dfimafn | ⊢ ( ( Fun  𝐼  ∧  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } }  ⊆  dom  𝐼 )  →  ( 𝐼  “  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } )  =  { 𝑒  ∣  ∃ 𝑗  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ( 𝐼 ‘ 𝑗 )  =  𝑒 } ) | 
						
							| 30 | 28 9 29 | sylancl | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝐼  “  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } )  =  { 𝑒  ∣  ∃ 𝑗  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ( 𝐼 ‘ 𝑗 )  =  𝑒 } ) | 
						
							| 31 |  | fveqeq2 | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝐼 ‘ 𝑖 )  =  { 𝑁 }  ↔  ( 𝐼 ‘ 𝑗 )  =  { 𝑁 } ) ) | 
						
							| 32 | 31 | elrab | ⊢ ( 𝑗  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } }  ↔  ( 𝑗  ∈  dom  𝐼  ∧  ( 𝐼 ‘ 𝑗 )  =  { 𝑁 } ) ) | 
						
							| 33 |  | simpl | ⊢ ( ( 𝑗  ∈  dom  𝐼  ∧  ( 𝐼 ‘ 𝑗 )  =  { 𝑁 } )  →  𝑗  ∈  dom  𝐼 ) | 
						
							| 34 |  | fvelrn | ⊢ ( ( Fun  𝐼  ∧  𝑗  ∈  dom  𝐼 )  →  ( 𝐼 ‘ 𝑗 )  ∈  ran  𝐼 ) | 
						
							| 35 | 2 | eqcomi | ⊢ ( iEdg ‘ 𝐺 )  =  𝐼 | 
						
							| 36 | 35 | rneqi | ⊢ ran  ( iEdg ‘ 𝐺 )  =  ran  𝐼 | 
						
							| 37 | 34 36 | eleqtrrdi | ⊢ ( ( Fun  𝐼  ∧  𝑗  ∈  dom  𝐼 )  →  ( 𝐼 ‘ 𝑗 )  ∈  ran  ( iEdg ‘ 𝐺 ) ) | 
						
							| 38 | 28 33 37 | syl2an | ⊢ ( ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑗  ∈  dom  𝐼  ∧  ( 𝐼 ‘ 𝑗 )  =  { 𝑁 } ) )  →  ( 𝐼 ‘ 𝑗 )  ∈  ran  ( iEdg ‘ 𝐺 ) ) | 
						
							| 39 | 38 | 3adant3 | ⊢ ( ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑗  ∈  dom  𝐼  ∧  ( 𝐼 ‘ 𝑗 )  =  { 𝑁 } )  ∧  ( 𝐼 ‘ 𝑗 )  =  𝑓 )  →  ( 𝐼 ‘ 𝑗 )  ∈  ran  ( iEdg ‘ 𝐺 ) ) | 
						
							| 40 |  | eleq1 | ⊢ ( 𝑓  =  ( 𝐼 ‘ 𝑗 )  →  ( 𝑓  ∈  ran  ( iEdg ‘ 𝐺 )  ↔  ( 𝐼 ‘ 𝑗 )  ∈  ran  ( iEdg ‘ 𝐺 ) ) ) | 
						
							| 41 | 40 | eqcoms | ⊢ ( ( 𝐼 ‘ 𝑗 )  =  𝑓  →  ( 𝑓  ∈  ran  ( iEdg ‘ 𝐺 )  ↔  ( 𝐼 ‘ 𝑗 )  ∈  ran  ( iEdg ‘ 𝐺 ) ) ) | 
						
							| 42 | 41 | 3ad2ant3 | ⊢ ( ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑗  ∈  dom  𝐼  ∧  ( 𝐼 ‘ 𝑗 )  =  { 𝑁 } )  ∧  ( 𝐼 ‘ 𝑗 )  =  𝑓 )  →  ( 𝑓  ∈  ran  ( iEdg ‘ 𝐺 )  ↔  ( 𝐼 ‘ 𝑗 )  ∈  ran  ( iEdg ‘ 𝐺 ) ) ) | 
						
							| 43 | 39 42 | mpbird | ⊢ ( ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑗  ∈  dom  𝐼  ∧  ( 𝐼 ‘ 𝑗 )  =  { 𝑁 } )  ∧  ( 𝐼 ‘ 𝑗 )  =  𝑓 )  →  𝑓  ∈  ran  ( iEdg ‘ 𝐺 ) ) | 
						
							| 44 |  | edgval | ⊢ ( Edg ‘ 𝐺 )  =  ran  ( iEdg ‘ 𝐺 ) | 
						
							| 45 | 44 | a1i | ⊢ ( 𝐺  ∈  USHGraph  →  ( Edg ‘ 𝐺 )  =  ran  ( iEdg ‘ 𝐺 ) ) | 
						
							| 46 | 1 45 | eqtrid | ⊢ ( 𝐺  ∈  USHGraph  →  𝐸  =  ran  ( iEdg ‘ 𝐺 ) ) | 
						
							| 47 | 46 | eleq2d | ⊢ ( 𝐺  ∈  USHGraph  →  ( 𝑓  ∈  𝐸  ↔  𝑓  ∈  ran  ( iEdg ‘ 𝐺 ) ) ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝑓  ∈  𝐸  ↔  𝑓  ∈  ran  ( iEdg ‘ 𝐺 ) ) ) | 
						
							| 49 | 48 | 3ad2ant1 | ⊢ ( ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑗  ∈  dom  𝐼  ∧  ( 𝐼 ‘ 𝑗 )  =  { 𝑁 } )  ∧  ( 𝐼 ‘ 𝑗 )  =  𝑓 )  →  ( 𝑓  ∈  𝐸  ↔  𝑓  ∈  ran  ( iEdg ‘ 𝐺 ) ) ) | 
						
							| 50 | 43 49 | mpbird | ⊢ ( ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑗  ∈  dom  𝐼  ∧  ( 𝐼 ‘ 𝑗 )  =  { 𝑁 } )  ∧  ( 𝐼 ‘ 𝑗 )  =  𝑓 )  →  𝑓  ∈  𝐸 ) | 
						
							| 51 |  | eqeq1 | ⊢ ( ( 𝐼 ‘ 𝑗 )  =  𝑓  →  ( ( 𝐼 ‘ 𝑗 )  =  { 𝑁 }  ↔  𝑓  =  { 𝑁 } ) ) | 
						
							| 52 | 51 | biimpcd | ⊢ ( ( 𝐼 ‘ 𝑗 )  =  { 𝑁 }  →  ( ( 𝐼 ‘ 𝑗 )  =  𝑓  →  𝑓  =  { 𝑁 } ) ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( 𝑗  ∈  dom  𝐼  ∧  ( 𝐼 ‘ 𝑗 )  =  { 𝑁 } )  →  ( ( 𝐼 ‘ 𝑗 )  =  𝑓  →  𝑓  =  { 𝑁 } ) ) | 
						
							| 54 | 53 | a1i | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  →  ( ( 𝑗  ∈  dom  𝐼  ∧  ( 𝐼 ‘ 𝑗 )  =  { 𝑁 } )  →  ( ( 𝐼 ‘ 𝑗 )  =  𝑓  →  𝑓  =  { 𝑁 } ) ) ) | 
						
							| 55 | 54 | 3imp | ⊢ ( ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑗  ∈  dom  𝐼  ∧  ( 𝐼 ‘ 𝑗 )  =  { 𝑁 } )  ∧  ( 𝐼 ‘ 𝑗 )  =  𝑓 )  →  𝑓  =  { 𝑁 } ) | 
						
							| 56 | 50 55 | jca | ⊢ ( ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑗  ∈  dom  𝐼  ∧  ( 𝐼 ‘ 𝑗 )  =  { 𝑁 } )  ∧  ( 𝐼 ‘ 𝑗 )  =  𝑓 )  →  ( 𝑓  ∈  𝐸  ∧  𝑓  =  { 𝑁 } ) ) | 
						
							| 57 | 56 | 3exp | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  →  ( ( 𝑗  ∈  dom  𝐼  ∧  ( 𝐼 ‘ 𝑗 )  =  { 𝑁 } )  →  ( ( 𝐼 ‘ 𝑗 )  =  𝑓  →  ( 𝑓  ∈  𝐸  ∧  𝑓  =  { 𝑁 } ) ) ) ) | 
						
							| 58 | 32 57 | biimtrid | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝑗  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } }  →  ( ( 𝐼 ‘ 𝑗 )  =  𝑓  →  ( 𝑓  ∈  𝐸  ∧  𝑓  =  { 𝑁 } ) ) ) ) | 
						
							| 59 | 58 | rexlimdv | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  →  ( ∃ 𝑗  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ( 𝐼 ‘ 𝑗 )  =  𝑓  →  ( 𝑓  ∈  𝐸  ∧  𝑓  =  { 𝑁 } ) ) ) | 
						
							| 60 | 25 | funfnd | ⊢ ( 𝐺  ∈  USHGraph  →  ( iEdg ‘ 𝐺 )  Fn  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 61 |  | fvelrnb | ⊢ ( ( iEdg ‘ 𝐺 )  Fn  dom  ( iEdg ‘ 𝐺 )  →  ( 𝑓  ∈  ran  ( iEdg ‘ 𝐺 )  ↔  ∃ 𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  𝑓 ) ) | 
						
							| 62 | 60 61 | syl | ⊢ ( 𝐺  ∈  USHGraph  →  ( 𝑓  ∈  ran  ( iEdg ‘ 𝐺 )  ↔  ∃ 𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  𝑓 ) ) | 
						
							| 63 | 35 | dmeqi | ⊢ dom  ( iEdg ‘ 𝐺 )  =  dom  𝐼 | 
						
							| 64 | 63 | eleq2i | ⊢ ( 𝑗  ∈  dom  ( iEdg ‘ 𝐺 )  ↔  𝑗  ∈  dom  𝐼 ) | 
						
							| 65 | 64 | biimpi | ⊢ ( 𝑗  ∈  dom  ( iEdg ‘ 𝐺 )  →  𝑗  ∈  dom  𝐼 ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( 𝑗  ∈  dom  ( iEdg ‘ 𝐺 )  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  𝑓 )  →  𝑗  ∈  dom  𝐼 ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( ( 𝐺  ∈  USHGraph  ∧  𝑓  =  { 𝑁 } )  ∧  ( 𝑗  ∈  dom  ( iEdg ‘ 𝐺 )  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  𝑓 ) )  →  𝑗  ∈  dom  𝐼 ) | 
						
							| 68 | 35 | fveq1i | ⊢ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  ( 𝐼 ‘ 𝑗 ) | 
						
							| 69 | 68 | eqeq2i | ⊢ ( 𝑓  =  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  ↔  𝑓  =  ( 𝐼 ‘ 𝑗 ) ) | 
						
							| 70 | 69 | biimpi | ⊢ ( 𝑓  =  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  →  𝑓  =  ( 𝐼 ‘ 𝑗 ) ) | 
						
							| 71 | 70 | eqcoms | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  𝑓  →  𝑓  =  ( 𝐼 ‘ 𝑗 ) ) | 
						
							| 72 | 71 | eqeq1d | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  𝑓  →  ( 𝑓  =  { 𝑁 }  ↔  ( 𝐼 ‘ 𝑗 )  =  { 𝑁 } ) ) | 
						
							| 73 | 72 | biimpcd | ⊢ ( 𝑓  =  { 𝑁 }  →  ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  𝑓  →  ( 𝐼 ‘ 𝑗 )  =  { 𝑁 } ) ) | 
						
							| 74 | 73 | adantl | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑓  =  { 𝑁 } )  →  ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  𝑓  →  ( 𝐼 ‘ 𝑗 )  =  { 𝑁 } ) ) | 
						
							| 75 | 74 | adantld | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑓  =  { 𝑁 } )  →  ( ( 𝑗  ∈  dom  ( iEdg ‘ 𝐺 )  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  𝑓 )  →  ( 𝐼 ‘ 𝑗 )  =  { 𝑁 } ) ) | 
						
							| 76 | 75 | imp | ⊢ ( ( ( 𝐺  ∈  USHGraph  ∧  𝑓  =  { 𝑁 } )  ∧  ( 𝑗  ∈  dom  ( iEdg ‘ 𝐺 )  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  𝑓 ) )  →  ( 𝐼 ‘ 𝑗 )  =  { 𝑁 } ) | 
						
							| 77 | 67 76 | jca | ⊢ ( ( ( 𝐺  ∈  USHGraph  ∧  𝑓  =  { 𝑁 } )  ∧  ( 𝑗  ∈  dom  ( iEdg ‘ 𝐺 )  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  𝑓 ) )  →  ( 𝑗  ∈  dom  𝐼  ∧  ( 𝐼 ‘ 𝑗 )  =  { 𝑁 } ) ) | 
						
							| 78 | 77 32 | sylibr | ⊢ ( ( ( 𝐺  ∈  USHGraph  ∧  𝑓  =  { 𝑁 } )  ∧  ( 𝑗  ∈  dom  ( iEdg ‘ 𝐺 )  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  𝑓 ) )  →  𝑗  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ) | 
						
							| 79 | 68 | eqeq1i | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  𝑓  ↔  ( 𝐼 ‘ 𝑗 )  =  𝑓 ) | 
						
							| 80 | 79 | biimpi | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  𝑓  →  ( 𝐼 ‘ 𝑗 )  =  𝑓 ) | 
						
							| 81 | 80 | adantl | ⊢ ( ( 𝑗  ∈  dom  ( iEdg ‘ 𝐺 )  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  𝑓 )  →  ( 𝐼 ‘ 𝑗 )  =  𝑓 ) | 
						
							| 82 | 81 | adantl | ⊢ ( ( ( 𝐺  ∈  USHGraph  ∧  𝑓  =  { 𝑁 } )  ∧  ( 𝑗  ∈  dom  ( iEdg ‘ 𝐺 )  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  𝑓 ) )  →  ( 𝐼 ‘ 𝑗 )  =  𝑓 ) | 
						
							| 83 | 78 82 | jca | ⊢ ( ( ( 𝐺  ∈  USHGraph  ∧  𝑓  =  { 𝑁 } )  ∧  ( 𝑗  ∈  dom  ( iEdg ‘ 𝐺 )  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  𝑓 ) )  →  ( 𝑗  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } }  ∧  ( 𝐼 ‘ 𝑗 )  =  𝑓 ) ) | 
						
							| 84 | 83 | ex | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑓  =  { 𝑁 } )  →  ( ( 𝑗  ∈  dom  ( iEdg ‘ 𝐺 )  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  𝑓 )  →  ( 𝑗  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } }  ∧  ( 𝐼 ‘ 𝑗 )  =  𝑓 ) ) ) | 
						
							| 85 | 84 | reximdv2 | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑓  =  { 𝑁 } )  →  ( ∃ 𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  𝑓  →  ∃ 𝑗  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ( 𝐼 ‘ 𝑗 )  =  𝑓 ) ) | 
						
							| 86 | 85 | ex | ⊢ ( 𝐺  ∈  USHGraph  →  ( 𝑓  =  { 𝑁 }  →  ( ∃ 𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  𝑓  →  ∃ 𝑗  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ( 𝐼 ‘ 𝑗 )  =  𝑓 ) ) ) | 
						
							| 87 | 86 | com23 | ⊢ ( 𝐺  ∈  USHGraph  →  ( ∃ 𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  𝑓  →  ( 𝑓  =  { 𝑁 }  →  ∃ 𝑗  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ( 𝐼 ‘ 𝑗 )  =  𝑓 ) ) ) | 
						
							| 88 | 62 87 | sylbid | ⊢ ( 𝐺  ∈  USHGraph  →  ( 𝑓  ∈  ran  ( iEdg ‘ 𝐺 )  →  ( 𝑓  =  { 𝑁 }  →  ∃ 𝑗  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ( 𝐼 ‘ 𝑗 )  =  𝑓 ) ) ) | 
						
							| 89 | 47 88 | sylbid | ⊢ ( 𝐺  ∈  USHGraph  →  ( 𝑓  ∈  𝐸  →  ( 𝑓  =  { 𝑁 }  →  ∃ 𝑗  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ( 𝐼 ‘ 𝑗 )  =  𝑓 ) ) ) | 
						
							| 90 | 89 | impd | ⊢ ( 𝐺  ∈  USHGraph  →  ( ( 𝑓  ∈  𝐸  ∧  𝑓  =  { 𝑁 } )  →  ∃ 𝑗  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ( 𝐼 ‘ 𝑗 )  =  𝑓 ) ) | 
						
							| 91 | 90 | adantr | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  →  ( ( 𝑓  ∈  𝐸  ∧  𝑓  =  { 𝑁 } )  →  ∃ 𝑗  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ( 𝐼 ‘ 𝑗 )  =  𝑓 ) ) | 
						
							| 92 | 59 91 | impbid | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  →  ( ∃ 𝑗  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ( 𝐼 ‘ 𝑗 )  =  𝑓  ↔  ( 𝑓  ∈  𝐸  ∧  𝑓  =  { 𝑁 } ) ) ) | 
						
							| 93 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 94 |  | eqeq2 | ⊢ ( 𝑒  =  𝑓  →  ( ( 𝐼 ‘ 𝑗 )  =  𝑒  ↔  ( 𝐼 ‘ 𝑗 )  =  𝑓 ) ) | 
						
							| 95 | 94 | rexbidv | ⊢ ( 𝑒  =  𝑓  →  ( ∃ 𝑗  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ( 𝐼 ‘ 𝑗 )  =  𝑒  ↔  ∃ 𝑗  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ( 𝐼 ‘ 𝑗 )  =  𝑓 ) ) | 
						
							| 96 | 93 95 | elab | ⊢ ( 𝑓  ∈  { 𝑒  ∣  ∃ 𝑗  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ( 𝐼 ‘ 𝑗 )  =  𝑒 }  ↔  ∃ 𝑗  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ( 𝐼 ‘ 𝑗 )  =  𝑓 ) | 
						
							| 97 |  | eqeq1 | ⊢ ( 𝑒  =  𝑓  →  ( 𝑒  =  { 𝑁 }  ↔  𝑓  =  { 𝑁 } ) ) | 
						
							| 98 | 97 4 | elrab2 | ⊢ ( 𝑓  ∈  𝐵  ↔  ( 𝑓  ∈  𝐸  ∧  𝑓  =  { 𝑁 } ) ) | 
						
							| 99 | 92 96 98 | 3bitr4g | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝑓  ∈  { 𝑒  ∣  ∃ 𝑗  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ( 𝐼 ‘ 𝑗 )  =  𝑒 }  ↔  𝑓  ∈  𝐵 ) ) | 
						
							| 100 | 99 | eqrdv | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  →  { 𝑒  ∣  ∃ 𝑗  ∈  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ( 𝐼 ‘ 𝑗 )  =  𝑒 }  =  𝐵 ) | 
						
							| 101 | 30 100 | eqtr2d | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  →  𝐵  =  ( 𝐼  “  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ) ) | 
						
							| 102 | 21 12 101 | f1oeq123d | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ↔  ( 𝐼  ↾  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ) : { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } –1-1-onto→ ( 𝐼  “  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑁 } } ) ) ) | 
						
							| 103 | 11 102 | mpbird | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑁  ∈  𝑉 )  →  𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |