Metamath Proof Explorer


Theorem ushgrf

Description: The edge function of an undirected simple hypergraph is a one-to-one function into the power set of the set of vertices. (Contributed by AV, 9-Oct-2020)

Ref Expression
Hypotheses uhgrf.v 𝑉 = ( Vtx ‘ 𝐺 )
uhgrf.e 𝐸 = ( iEdg ‘ 𝐺 )
Assertion ushgrf ( 𝐺 ∈ USHGraph → 𝐸 : dom 𝐸1-1→ ( 𝒫 𝑉 ∖ { ∅ } ) )

Proof

Step Hyp Ref Expression
1 uhgrf.v 𝑉 = ( Vtx ‘ 𝐺 )
2 uhgrf.e 𝐸 = ( iEdg ‘ 𝐺 )
3 1 2 isushgr ( 𝐺 ∈ USHGraph → ( 𝐺 ∈ USHGraph ↔ 𝐸 : dom 𝐸1-1→ ( 𝒫 𝑉 ∖ { ∅ } ) ) )
4 3 ibi ( 𝐺 ∈ USHGraph → 𝐸 : dom 𝐸1-1→ ( 𝒫 𝑉 ∖ { ∅ } ) )