Metamath Proof Explorer


Theorem uspgr2v1e2w

Description: A simple pseudograph with two vertices and one edge represented by a singleton word. (Contributed by AV, 9-Jan-2021)

Ref Expression
Assertion uspgr2v1e2w ( ( 𝐴𝑋𝐵𝑌 ) → ⟨ { 𝐴 , 𝐵 } , ⟨“ { 𝐴 , 𝐵 } ”⟩ ⟩ ∈ USPGraph )

Proof

Step Hyp Ref Expression
1 prex { 𝐴 , 𝐵 } ∈ V
2 prid1g ( 𝐴𝑋𝐴 ∈ { 𝐴 , 𝐵 } )
3 prid2g ( 𝐵𝑌𝐵 ∈ { 𝐴 , 𝐵 } )
4 uspgr1ewop ( ( { 𝐴 , 𝐵 } ∈ V ∧ 𝐴 ∈ { 𝐴 , 𝐵 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 } ) → ⟨ { 𝐴 , 𝐵 } , ⟨“ { 𝐴 , 𝐵 } ”⟩ ⟩ ∈ USPGraph )
5 1 2 3 4 mp3an3an ( ( 𝐴𝑋𝐵𝑌 ) → ⟨ { 𝐴 , 𝐵 } , ⟨“ { 𝐴 , 𝐵 } ”⟩ ⟩ ∈ USPGraph )