Metamath Proof Explorer


Theorem uspgr2wlkeq

Description: Conditions for two walks within the same simple pseudograph being the same. It is sufficient that the vertices (in the same order) are identical. (Contributed by AV, 3-Jul-2018) (Revised by AV, 14-Apr-2021)

Ref Expression
Assertion uspgr2wlkeq ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) → ( 𝐴 = 𝐵 ↔ ( 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ∧ ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ) ) )

Proof

Step Hyp Ref Expression
1 3anan32 ( ( 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ∧ ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( 1st𝐴 ) ‘ 𝑦 ) = ( ( 1st𝐵 ) ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ) ↔ ( ( 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ∧ ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( 1st𝐴 ) ‘ 𝑦 ) = ( ( 1st𝐵 ) ‘ 𝑦 ) ) )
2 1 a1i ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) → ( ( 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ∧ ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( 1st𝐴 ) ‘ 𝑦 ) = ( ( 1st𝐵 ) ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ) ↔ ( ( 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ∧ ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( 1st𝐴 ) ‘ 𝑦 ) = ( ( 1st𝐵 ) ‘ 𝑦 ) ) ) )
3 wlkeq ( ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) → ( 𝐴 = 𝐵 ↔ ( 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ∧ ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( 1st𝐴 ) ‘ 𝑦 ) = ( ( 1st𝐵 ) ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ) ) )
4 3 3expa ( ( ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) → ( 𝐴 = 𝐵 ↔ ( 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ∧ ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( 1st𝐴 ) ‘ 𝑦 ) = ( ( 1st𝐵 ) ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ) ) )
5 4 3adant1 ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) → ( 𝐴 = 𝐵 ↔ ( 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ∧ ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( 1st𝐴 ) ‘ 𝑦 ) = ( ( 1st𝐵 ) ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ) ) )
6 fzofzp1 ( 𝑥 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 + 1 ) ∈ ( 0 ... 𝑁 ) )
7 6 adantl ( ( ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑥 + 1 ) ∈ ( 0 ... 𝑁 ) )
8 fveq2 ( 𝑦 = ( 𝑥 + 1 ) → ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐴 ) ‘ ( 𝑥 + 1 ) ) )
9 fveq2 ( 𝑦 = ( 𝑥 + 1 ) → ( ( 2nd𝐵 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ ( 𝑥 + 1 ) ) )
10 8 9 eqeq12d ( 𝑦 = ( 𝑥 + 1 ) → ( ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ↔ ( ( 2nd𝐴 ) ‘ ( 𝑥 + 1 ) ) = ( ( 2nd𝐵 ) ‘ ( 𝑥 + 1 ) ) ) )
11 10 adantl ( ( ( ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 = ( 𝑥 + 1 ) ) → ( ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ↔ ( ( 2nd𝐴 ) ‘ ( 𝑥 + 1 ) ) = ( ( 2nd𝐵 ) ‘ ( 𝑥 + 1 ) ) ) )
12 7 11 rspcdv ( ( ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) → ( ( 2nd𝐴 ) ‘ ( 𝑥 + 1 ) ) = ( ( 2nd𝐵 ) ‘ ( 𝑥 + 1 ) ) ) )
13 12 impancom ( ( ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) ∧ ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ) → ( 𝑥 ∈ ( 0 ..^ 𝑁 ) → ( ( 2nd𝐴 ) ‘ ( 𝑥 + 1 ) ) = ( ( 2nd𝐵 ) ‘ ( 𝑥 + 1 ) ) ) )
14 13 ralrimiv ( ( ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) ∧ ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ) → ∀ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 2nd𝐴 ) ‘ ( 𝑥 + 1 ) ) = ( ( 2nd𝐵 ) ‘ ( 𝑥 + 1 ) ) )
15 fvoveq1 ( 𝑦 = 𝑥 → ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) = ( ( 2nd𝐴 ) ‘ ( 𝑥 + 1 ) ) )
16 fvoveq1 ( 𝑦 = 𝑥 → ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) = ( ( 2nd𝐵 ) ‘ ( 𝑥 + 1 ) ) )
17 15 16 eqeq12d ( 𝑦 = 𝑥 → ( ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) = ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) ↔ ( ( 2nd𝐴 ) ‘ ( 𝑥 + 1 ) ) = ( ( 2nd𝐵 ) ‘ ( 𝑥 + 1 ) ) ) )
18 17 cbvralvw ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) = ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) ↔ ∀ 𝑥 ∈ ( 0 ..^ 𝑁 ) ( ( 2nd𝐴 ) ‘ ( 𝑥 + 1 ) ) = ( ( 2nd𝐵 ) ‘ ( 𝑥 + 1 ) ) )
19 14 18 sylibr ( ( ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) ∧ ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ) → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) = ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) )
20 fzossfz ( 0 ..^ 𝑁 ) ⊆ ( 0 ... 𝑁 )
21 ssralv ( ( 0 ..^ 𝑁 ) ⊆ ( 0 ... 𝑁 ) → ( ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ) )
22 20 21 mp1i ( ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) → ( ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ) )
23 r19.26 ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ∧ ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) = ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) ) ↔ ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) = ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) ) )
24 preq12 ( ( ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ∧ ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) = ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) ) → { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } )
25 24 a1i ( ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) → ( ( ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ∧ ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) = ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) ) → { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ) )
26 25 ralimdv ( ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) → ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ∧ ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) = ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) ) → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ) )
27 23 26 syl5bir ( ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) → ( ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) = ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) ) → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ) )
28 27 expd ( ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) → ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) → ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) = ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ) ) )
29 22 28 syld ( ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) → ( ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) → ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) = ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ) ) )
30 29 imp ( ( ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) ∧ ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ) → ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) = ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ) )
31 19 30 mpd ( ( ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) ∧ ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ) → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } )
32 31 ex ( ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) → ( ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ) )
33 uspgrupgr ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph )
34 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
35 eqid ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 )
36 eqid ( 1st𝐴 ) = ( 1st𝐴 )
37 eqid ( 2nd𝐴 ) = ( 2nd𝐴 )
38 34 35 36 37 upgrwlkcompim ( ( 𝐺 ∈ UPGraph ∧ 𝐴 ∈ ( Walks ‘ 𝐺 ) ) → ( ( 1st𝐴 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 2nd𝐴 ) : ( 0 ... ( ♯ ‘ ( 1st𝐴 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐴 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } ) )
39 38 ex ( 𝐺 ∈ UPGraph → ( 𝐴 ∈ ( Walks ‘ 𝐺 ) → ( ( 1st𝐴 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 2nd𝐴 ) : ( 0 ... ( ♯ ‘ ( 1st𝐴 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐴 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } ) ) )
40 33 39 syl ( 𝐺 ∈ USPGraph → ( 𝐴 ∈ ( Walks ‘ 𝐺 ) → ( ( 1st𝐴 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 2nd𝐴 ) : ( 0 ... ( ♯ ‘ ( 1st𝐴 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐴 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } ) ) )
41 eqid ( 1st𝐵 ) = ( 1st𝐵 )
42 eqid ( 2nd𝐵 ) = ( 2nd𝐵 )
43 34 35 41 42 upgrwlkcompim ( ( 𝐺 ∈ UPGraph ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) → ( ( 1st𝐵 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 2nd𝐵 ) : ( 0 ... ( ♯ ‘ ( 1st𝐵 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐵 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ) )
44 43 ex ( 𝐺 ∈ UPGraph → ( 𝐵 ∈ ( Walks ‘ 𝐺 ) → ( ( 1st𝐵 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 2nd𝐵 ) : ( 0 ... ( ♯ ‘ ( 1st𝐵 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐵 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ) ) )
45 33 44 syl ( 𝐺 ∈ USPGraph → ( 𝐵 ∈ ( Walks ‘ 𝐺 ) → ( ( 1st𝐵 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 2nd𝐵 ) : ( 0 ... ( ♯ ‘ ( 1st𝐵 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐵 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ) ) )
46 oveq2 ( ( ♯ ‘ ( 1st𝐵 ) ) = 𝑁 → ( 0 ..^ ( ♯ ‘ ( 1st𝐵 ) ) ) = ( 0 ..^ 𝑁 ) )
47 46 eqcoms ( 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) → ( 0 ..^ ( ♯ ‘ ( 1st𝐵 ) ) ) = ( 0 ..^ 𝑁 ) )
48 47 raleqdv ( 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) → ( ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐵 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ↔ ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ) )
49 oveq2 ( ( ♯ ‘ ( 1st𝐴 ) ) = 𝑁 → ( 0 ..^ ( ♯ ‘ ( 1st𝐴 ) ) ) = ( 0 ..^ 𝑁 ) )
50 49 eqcoms ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) → ( 0 ..^ ( ♯ ‘ ( 1st𝐴 ) ) ) = ( 0 ..^ 𝑁 ) )
51 50 raleqdv ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) → ( ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐴 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } ↔ ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } ) )
52 48 51 bi2anan9r ( ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) → ( ( ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐵 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ∧ ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐴 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } ) ↔ ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ∧ ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } ) ) )
53 r19.26 ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } ) ↔ ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ∧ ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } ) )
54 eqeq2 ( { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } → ( ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ) )
55 eqeq2 ( { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) ) )
56 55 eqcoms ( ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } → ( ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) ) )
57 56 biimpd ( ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } → ( ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } → ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) ) )
58 54 57 syl6bi ( { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } → ( ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } → ( ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } → ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) ) ) )
59 58 com13 ( ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } → ( ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } → ( { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } → ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) ) ) )
60 59 imp ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } ) → ( { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } → ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) ) )
61 60 ral2imi ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } ) → ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) ) )
62 53 61 sylbir ( ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ∧ ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } ) → ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) ) )
63 52 62 syl6bi ( ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) → ( ( ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐵 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ∧ ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐴 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } ) → ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) ) ) )
64 63 com12 ( ( ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐵 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ∧ ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐴 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } ) → ( ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) → ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) ) ) )
65 64 ex ( ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐵 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } → ( ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐴 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } → ( ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) → ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) ) ) ) )
66 65 3ad2ant3 ( ( ( 1st𝐵 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 2nd𝐵 ) : ( 0 ... ( ♯ ‘ ( 1st𝐵 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐵 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ) → ( ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐴 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } → ( ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) → ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) ) ) ) )
67 66 com12 ( ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐴 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } → ( ( ( 1st𝐵 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 2nd𝐵 ) : ( 0 ... ( ♯ ‘ ( 1st𝐵 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐵 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ) → ( ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) → ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) ) ) ) )
68 67 3ad2ant3 ( ( ( 1st𝐴 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 2nd𝐴 ) : ( 0 ... ( ♯ ‘ ( 1st𝐴 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐴 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } ) → ( ( ( 1st𝐵 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 2nd𝐵 ) : ( 0 ... ( ♯ ‘ ( 1st𝐵 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐵 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ) → ( ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) → ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) ) ) ) )
69 68 imp ( ( ( ( 1st𝐴 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 2nd𝐴 ) : ( 0 ... ( ♯ ‘ ( 1st𝐴 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐴 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } ) ∧ ( ( 1st𝐵 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 2nd𝐵 ) : ( 0 ... ( ♯ ‘ ( 1st𝐵 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐵 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ) ) → ( ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) → ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) ) ) )
70 69 expd ( ( ( ( 1st𝐴 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 2nd𝐴 ) : ( 0 ... ( ♯ ‘ ( 1st𝐴 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐴 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } ) ∧ ( ( 1st𝐵 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 2nd𝐵 ) : ( 0 ... ( ♯ ‘ ( 1st𝐵 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐵 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ) ) → ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) → ( 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) → ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) ) ) ) )
71 70 a1i ( 𝐺 ∈ USPGraph → ( ( ( ( 1st𝐴 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 2nd𝐴 ) : ( 0 ... ( ♯ ‘ ( 1st𝐴 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐴 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } ) ∧ ( ( 1st𝐵 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 2nd𝐵 ) : ( 0 ... ( ♯ ‘ ( 1st𝐵 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐵 ) ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } ) ) → ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) → ( 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) → ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) ) ) ) ) )
72 40 45 71 syl2and ( 𝐺 ∈ USPGraph → ( ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) → ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) → ( 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) → ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) ) ) ) ) )
73 72 3imp1 ( ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) → ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) { ( ( 2nd𝐴 ) ‘ 𝑦 ) , ( ( 2nd𝐴 ) ‘ ( 𝑦 + 1 ) ) } = { ( ( 2nd𝐵 ) ‘ 𝑦 ) , ( ( 2nd𝐵 ) ‘ ( 𝑦 + 1 ) ) } → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) ) )
74 eqcom ( ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) )
75 35 uspgrf1oedg ( 𝐺 ∈ USPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) )
76 f1of1 ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ ( Edg ‘ 𝐺 ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( Edg ‘ 𝐺 ) )
77 75 76 syl ( 𝐺 ∈ USPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( Edg ‘ 𝐺 ) )
78 eqidd ( 𝐺 ∈ USPGraph → ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) )
79 eqidd ( 𝐺 ∈ USPGraph → dom ( iEdg ‘ 𝐺 ) = dom ( iEdg ‘ 𝐺 ) )
80 edgval ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 )
81 80 eqcomi ran ( iEdg ‘ 𝐺 ) = ( Edg ‘ 𝐺 )
82 81 a1i ( 𝐺 ∈ USPGraph → ran ( iEdg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) )
83 78 79 82 f1eq123d ( 𝐺 ∈ USPGraph → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ran ( iEdg ‘ 𝐺 ) ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( Edg ‘ 𝐺 ) ) )
84 77 83 mpbird ( 𝐺 ∈ USPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ran ( iEdg ‘ 𝐺 ) )
85 84 3ad2ant1 ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ran ( iEdg ‘ 𝐺 ) )
86 85 adantr ( ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ran ( iEdg ‘ 𝐺 ) )
87 34 35 36 37 wlkelwrd ( 𝐴 ∈ ( Walks ‘ 𝐺 ) → ( ( 1st𝐴 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 2nd𝐴 ) : ( 0 ... ( ♯ ‘ ( 1st𝐴 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ) )
88 34 35 41 42 wlkelwrd ( 𝐵 ∈ ( Walks ‘ 𝐺 ) → ( ( 1st𝐵 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 2nd𝐵 ) : ( 0 ... ( ♯ ‘ ( 1st𝐵 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ) )
89 oveq2 ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) → ( 0 ..^ 𝑁 ) = ( 0 ..^ ( ♯ ‘ ( 1st𝐴 ) ) ) )
90 89 eleq2d ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) → ( 𝑦 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐴 ) ) ) ) )
91 wrdsymbcl ( ( ( 1st𝐴 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐴 ) ) ) ) → ( ( 1st𝐴 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) )
92 91 expcom ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐴 ) ) ) → ( ( 1st𝐴 ) ∈ Word dom ( iEdg ‘ 𝐺 ) → ( ( 1st𝐴 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) )
93 90 92 syl6bi ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) → ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → ( ( 1st𝐴 ) ∈ Word dom ( iEdg ‘ 𝐺 ) → ( ( 1st𝐴 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) )
94 93 adantr ( ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) → ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → ( ( 1st𝐴 ) ∈ Word dom ( iEdg ‘ 𝐺 ) → ( ( 1st𝐴 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) )
95 94 imp ( ( ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 1st𝐴 ) ∈ Word dom ( iEdg ‘ 𝐺 ) → ( ( 1st𝐴 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) )
96 95 com12 ( ( 1st𝐴 ) ∈ Word dom ( iEdg ‘ 𝐺 ) → ( ( ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 1st𝐴 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) )
97 96 adantl ( ( ( 1st𝐵 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 1st𝐴 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ) → ( ( ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 1st𝐴 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) )
98 oveq2 ( 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) → ( 0 ..^ 𝑁 ) = ( 0 ..^ ( ♯ ‘ ( 1st𝐵 ) ) ) )
99 98 eleq2d ( 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) → ( 𝑦 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐵 ) ) ) ) )
100 wrdsymbcl ( ( ( 1st𝐵 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐵 ) ) ) ) → ( ( 1st𝐵 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) )
101 100 expcom ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ ( 1st𝐵 ) ) ) → ( ( 1st𝐵 ) ∈ Word dom ( iEdg ‘ 𝐺 ) → ( ( 1st𝐵 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) )
102 99 101 syl6bi ( 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) → ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → ( ( 1st𝐵 ) ∈ Word dom ( iEdg ‘ 𝐺 ) → ( ( 1st𝐵 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) )
103 102 adantl ( ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) → ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → ( ( 1st𝐵 ) ∈ Word dom ( iEdg ‘ 𝐺 ) → ( ( 1st𝐵 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) )
104 103 imp ( ( ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 1st𝐵 ) ∈ Word dom ( iEdg ‘ 𝐺 ) → ( ( 1st𝐵 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) )
105 104 com12 ( ( 1st𝐵 ) ∈ Word dom ( iEdg ‘ 𝐺 ) → ( ( ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 1st𝐵 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) )
106 105 adantr ( ( ( 1st𝐵 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 1st𝐴 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ) → ( ( ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 1st𝐵 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) )
107 97 106 jcad ( ( ( 1st𝐵 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 1st𝐴 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ) → ( ( ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 1st𝐴 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( 1st𝐵 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) )
108 107 ex ( ( 1st𝐵 ) ∈ Word dom ( iEdg ‘ 𝐺 ) → ( ( 1st𝐴 ) ∈ Word dom ( iEdg ‘ 𝐺 ) → ( ( ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 1st𝐴 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( 1st𝐵 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) ) )
109 108 adantr ( ( ( 1st𝐵 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 2nd𝐵 ) : ( 0 ... ( ♯ ‘ ( 1st𝐵 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( ( 1st𝐴 ) ∈ Word dom ( iEdg ‘ 𝐺 ) → ( ( ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 1st𝐴 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( 1st𝐵 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) ) )
110 109 com12 ( ( 1st𝐴 ) ∈ Word dom ( iEdg ‘ 𝐺 ) → ( ( ( 1st𝐵 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 2nd𝐵 ) : ( 0 ... ( ♯ ‘ ( 1st𝐵 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( ( ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 1st𝐴 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( 1st𝐵 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) ) )
111 110 adantr ( ( ( 1st𝐴 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 2nd𝐴 ) : ( 0 ... ( ♯ ‘ ( 1st𝐴 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( ( ( 1st𝐵 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 2nd𝐵 ) : ( 0 ... ( ♯ ‘ ( 1st𝐵 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( ( ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 1st𝐴 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( 1st𝐵 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) ) )
112 111 imp ( ( ( ( 1st𝐴 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 2nd𝐴 ) : ( 0 ... ( ♯ ‘ ( 1st𝐴 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ∧ ( ( 1st𝐵 ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 2nd𝐵 ) : ( 0 ... ( ♯ ‘ ( 1st𝐵 ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) → ( ( ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 1st𝐴 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( 1st𝐵 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) )
113 87 88 112 syl2an ( ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) → ( ( ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 1st𝐴 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( 1st𝐵 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) )
114 113 expd ( ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) → ( ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) → ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → ( ( ( 1st𝐴 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( 1st𝐵 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) ) )
115 114 expd ( ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) → ( 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) → ( 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) → ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → ( ( ( 1st𝐴 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( 1st𝐵 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) ) ) )
116 115 imp ( ( ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) → ( 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) → ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → ( ( ( 1st𝐴 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( 1st𝐵 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) ) )
117 116 3adant1 ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) → ( 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) → ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → ( ( ( 1st𝐴 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( 1st𝐵 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) ) )
118 117 imp ( ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) → ( 𝑦 ∈ ( 0 ..^ 𝑁 ) → ( ( ( 1st𝐴 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( 1st𝐵 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) )
119 118 imp ( ( ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 1st𝐴 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( 1st𝐵 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) )
120 f1veqaeq ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ran ( iEdg ‘ 𝐺 ) ∧ ( ( ( 1st𝐴 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( 1st𝐵 ) ‘ 𝑦 ) ∈ dom ( iEdg ‘ 𝐺 ) ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) → ( ( 1st𝐴 ) ‘ 𝑦 ) = ( ( 1st𝐵 ) ‘ 𝑦 ) ) )
121 86 119 120 syl2an2r ( ( ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) → ( ( 1st𝐴 ) ‘ 𝑦 ) = ( ( 1st𝐵 ) ‘ 𝑦 ) ) )
122 74 121 syl5bi ( ( ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) ∧ 𝑦 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) → ( ( 1st𝐴 ) ‘ 𝑦 ) = ( ( 1st𝐵 ) ‘ 𝑦 ) ) )
123 122 ralimdva ( ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) → ( ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐵 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 1st𝐴 ) ‘ 𝑦 ) ) → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( 1st𝐴 ) ‘ 𝑦 ) = ( ( 1st𝐵 ) ‘ 𝑦 ) ) )
124 32 73 123 3syld ( ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ) → ( ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( 1st𝐴 ) ‘ 𝑦 ) = ( ( 1st𝐵 ) ‘ 𝑦 ) ) )
125 124 expimpd ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) → ( ( 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ∧ ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ) → ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( 1st𝐴 ) ‘ 𝑦 ) = ( ( 1st𝐵 ) ‘ 𝑦 ) ) )
126 125 pm4.71d ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) → ( ( 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ∧ ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ) ↔ ( ( 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ∧ ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ ( 0 ..^ 𝑁 ) ( ( 1st𝐴 ) ‘ 𝑦 ) = ( ( 1st𝐵 ) ‘ 𝑦 ) ) ) )
127 2 5 126 3bitr4d ( ( 𝐺 ∈ USPGraph ∧ ( 𝐴 ∈ ( Walks ‘ 𝐺 ) ∧ 𝐵 ∈ ( Walks ‘ 𝐺 ) ) ∧ 𝑁 = ( ♯ ‘ ( 1st𝐴 ) ) ) → ( 𝐴 = 𝐵 ↔ ( 𝑁 = ( ♯ ‘ ( 1st𝐵 ) ) ∧ ∀ 𝑦 ∈ ( 0 ... 𝑁 ) ( ( 2nd𝐴 ) ‘ 𝑦 ) = ( ( 2nd𝐵 ) ‘ 𝑦 ) ) ) )