Step |
Hyp |
Ref |
Expression |
1 |
|
uspgredg2v.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
uspgredg2v.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
uspgredg2v.a |
⊢ 𝐴 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } |
4 |
|
uspgredg2v.f |
⊢ 𝐹 = ( 𝑦 ∈ 𝐴 ↦ ( ℩ 𝑧 ∈ 𝑉 𝑦 = { 𝑁 , 𝑧 } ) ) |
5 |
1 2 3
|
uspgredg2vlem |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑦 ∈ 𝐴 ) → ( ℩ 𝑧 ∈ 𝑉 𝑦 = { 𝑁 , 𝑧 } ) ∈ 𝑉 ) |
6 |
5
|
ralrimiva |
⊢ ( 𝐺 ∈ USPGraph → ∀ 𝑦 ∈ 𝐴 ( ℩ 𝑧 ∈ 𝑉 𝑦 = { 𝑁 , 𝑧 } ) ∈ 𝑉 ) |
7 |
6
|
adantr |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) → ∀ 𝑦 ∈ 𝐴 ( ℩ 𝑧 ∈ 𝑉 𝑦 = { 𝑁 , 𝑧 } ) ∈ 𝑉 ) |
8 |
|
preq2 |
⊢ ( 𝑧 = 𝑛 → { 𝑁 , 𝑧 } = { 𝑁 , 𝑛 } ) |
9 |
8
|
eqeq2d |
⊢ ( 𝑧 = 𝑛 → ( 𝑦 = { 𝑁 , 𝑧 } ↔ 𝑦 = { 𝑁 , 𝑛 } ) ) |
10 |
9
|
cbvriotavw |
⊢ ( ℩ 𝑧 ∈ 𝑉 𝑦 = { 𝑁 , 𝑧 } ) = ( ℩ 𝑛 ∈ 𝑉 𝑦 = { 𝑁 , 𝑛 } ) |
11 |
8
|
eqeq2d |
⊢ ( 𝑧 = 𝑛 → ( 𝑥 = { 𝑁 , 𝑧 } ↔ 𝑥 = { 𝑁 , 𝑛 } ) ) |
12 |
11
|
cbvriotavw |
⊢ ( ℩ 𝑧 ∈ 𝑉 𝑥 = { 𝑁 , 𝑧 } ) = ( ℩ 𝑛 ∈ 𝑉 𝑥 = { 𝑁 , 𝑛 } ) |
13 |
|
simpl |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐺 ∈ USPGraph ) |
14 |
|
eleq2w |
⊢ ( 𝑒 = 𝑦 → ( 𝑁 ∈ 𝑒 ↔ 𝑁 ∈ 𝑦 ) ) |
15 |
14 3
|
elrab2 |
⊢ ( 𝑦 ∈ 𝐴 ↔ ( 𝑦 ∈ 𝐸 ∧ 𝑁 ∈ 𝑦 ) ) |
16 |
2
|
eleq2i |
⊢ ( 𝑦 ∈ 𝐸 ↔ 𝑦 ∈ ( Edg ‘ 𝐺 ) ) |
17 |
16
|
biimpi |
⊢ ( 𝑦 ∈ 𝐸 → 𝑦 ∈ ( Edg ‘ 𝐺 ) ) |
18 |
17
|
anim1i |
⊢ ( ( 𝑦 ∈ 𝐸 ∧ 𝑁 ∈ 𝑦 ) → ( 𝑦 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑦 ) ) |
19 |
15 18
|
sylbi |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝑦 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑦 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑦 ) ) |
21 |
13 20
|
anim12i |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( 𝐺 ∈ USPGraph ∧ ( 𝑦 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑦 ) ) ) |
22 |
|
3anass |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑦 ) ↔ ( 𝐺 ∈ USPGraph ∧ ( 𝑦 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑦 ) ) ) |
23 |
21 22
|
sylibr |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( 𝐺 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑦 ) ) |
24 |
|
uspgredg2vtxeu |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑦 ) → ∃! 𝑛 ∈ ( Vtx ‘ 𝐺 ) 𝑦 = { 𝑁 , 𝑛 } ) |
25 |
|
reueq1 |
⊢ ( 𝑉 = ( Vtx ‘ 𝐺 ) → ( ∃! 𝑛 ∈ 𝑉 𝑦 = { 𝑁 , 𝑛 } ↔ ∃! 𝑛 ∈ ( Vtx ‘ 𝐺 ) 𝑦 = { 𝑁 , 𝑛 } ) ) |
26 |
1 25
|
ax-mp |
⊢ ( ∃! 𝑛 ∈ 𝑉 𝑦 = { 𝑁 , 𝑛 } ↔ ∃! 𝑛 ∈ ( Vtx ‘ 𝐺 ) 𝑦 = { 𝑁 , 𝑛 } ) |
27 |
24 26
|
sylibr |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑦 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑦 ) → ∃! 𝑛 ∈ 𝑉 𝑦 = { 𝑁 , 𝑛 } ) |
28 |
23 27
|
syl |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ∃! 𝑛 ∈ 𝑉 𝑦 = { 𝑁 , 𝑛 } ) |
29 |
|
eleq2w |
⊢ ( 𝑒 = 𝑥 → ( 𝑁 ∈ 𝑒 ↔ 𝑁 ∈ 𝑥 ) ) |
30 |
29 3
|
elrab2 |
⊢ ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐸 ∧ 𝑁 ∈ 𝑥 ) ) |
31 |
2
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐸 ↔ 𝑥 ∈ ( Edg ‘ 𝐺 ) ) |
32 |
31
|
biimpi |
⊢ ( 𝑥 ∈ 𝐸 → 𝑥 ∈ ( Edg ‘ 𝐺 ) ) |
33 |
32
|
anim1i |
⊢ ( ( 𝑥 ∈ 𝐸 ∧ 𝑁 ∈ 𝑥 ) → ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑥 ) ) |
34 |
30 33
|
sylbi |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑥 ) ) |
35 |
34
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑥 ) ) |
36 |
13 35
|
anim12i |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( 𝐺 ∈ USPGraph ∧ ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑥 ) ) ) |
37 |
|
3anass |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑥 ) ↔ ( 𝐺 ∈ USPGraph ∧ ( 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑥 ) ) ) |
38 |
36 37
|
sylibr |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( 𝐺 ∈ USPGraph ∧ 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑥 ) ) |
39 |
|
uspgredg2vtxeu |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑥 ) → ∃! 𝑛 ∈ ( Vtx ‘ 𝐺 ) 𝑥 = { 𝑁 , 𝑛 } ) |
40 |
|
reueq1 |
⊢ ( 𝑉 = ( Vtx ‘ 𝐺 ) → ( ∃! 𝑛 ∈ 𝑉 𝑥 = { 𝑁 , 𝑛 } ↔ ∃! 𝑛 ∈ ( Vtx ‘ 𝐺 ) 𝑥 = { 𝑁 , 𝑛 } ) ) |
41 |
1 40
|
ax-mp |
⊢ ( ∃! 𝑛 ∈ 𝑉 𝑥 = { 𝑁 , 𝑛 } ↔ ∃! 𝑛 ∈ ( Vtx ‘ 𝐺 ) 𝑥 = { 𝑁 , 𝑛 } ) |
42 |
39 41
|
sylibr |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑥 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑥 ) → ∃! 𝑛 ∈ 𝑉 𝑥 = { 𝑁 , 𝑛 } ) |
43 |
38 42
|
syl |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ∃! 𝑛 ∈ 𝑉 𝑥 = { 𝑁 , 𝑛 } ) |
44 |
10 12 28 43
|
riotaeqimp |
⊢ ( ( ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) ∧ ( ℩ 𝑧 ∈ 𝑉 𝑦 = { 𝑁 , 𝑧 } ) = ( ℩ 𝑧 ∈ 𝑉 𝑥 = { 𝑁 , 𝑧 } ) ) → 𝑦 = 𝑥 ) |
45 |
44
|
ex |
⊢ ( ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( ( ℩ 𝑧 ∈ 𝑉 𝑦 = { 𝑁 , 𝑧 } ) = ( ℩ 𝑧 ∈ 𝑉 𝑥 = { 𝑁 , 𝑧 } ) → 𝑦 = 𝑥 ) ) |
46 |
45
|
ralrimivva |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) → ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( ( ℩ 𝑧 ∈ 𝑉 𝑦 = { 𝑁 , 𝑧 } ) = ( ℩ 𝑧 ∈ 𝑉 𝑥 = { 𝑁 , 𝑧 } ) → 𝑦 = 𝑥 ) ) |
47 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 = { 𝑁 , 𝑧 } ↔ 𝑥 = { 𝑁 , 𝑧 } ) ) |
48 |
47
|
riotabidv |
⊢ ( 𝑦 = 𝑥 → ( ℩ 𝑧 ∈ 𝑉 𝑦 = { 𝑁 , 𝑧 } ) = ( ℩ 𝑧 ∈ 𝑉 𝑥 = { 𝑁 , 𝑧 } ) ) |
49 |
4 48
|
f1mpt |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝑉 ↔ ( ∀ 𝑦 ∈ 𝐴 ( ℩ 𝑧 ∈ 𝑉 𝑦 = { 𝑁 , 𝑧 } ) ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( ( ℩ 𝑧 ∈ 𝑉 𝑦 = { 𝑁 , 𝑧 } ) = ( ℩ 𝑧 ∈ 𝑉 𝑥 = { 𝑁 , 𝑧 } ) → 𝑦 = 𝑥 ) ) ) |
50 |
7 46 49
|
sylanbrc |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 : 𝐴 –1-1→ 𝑉 ) |