Metamath Proof Explorer


Theorem uspgredg2vlem

Description: Lemma for uspgredg2v . (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 6-Dec-2020)

Ref Expression
Hypotheses uspgredg2v.v 𝑉 = ( Vtx ‘ 𝐺 )
uspgredg2v.e 𝐸 = ( Edg ‘ 𝐺 )
uspgredg2v.a 𝐴 = { 𝑒𝐸𝑁𝑒 }
Assertion uspgredg2vlem ( ( 𝐺 ∈ USPGraph ∧ 𝑌𝐴 ) → ( 𝑧𝑉 𝑌 = { 𝑁 , 𝑧 } ) ∈ 𝑉 )

Proof

Step Hyp Ref Expression
1 uspgredg2v.v 𝑉 = ( Vtx ‘ 𝐺 )
2 uspgredg2v.e 𝐸 = ( Edg ‘ 𝐺 )
3 uspgredg2v.a 𝐴 = { 𝑒𝐸𝑁𝑒 }
4 eleq2 ( 𝑒 = 𝑌 → ( 𝑁𝑒𝑁𝑌 ) )
5 4 3 elrab2 ( 𝑌𝐴 ↔ ( 𝑌𝐸𝑁𝑌 ) )
6 simpl ( ( 𝐺 ∈ USPGraph ∧ ( 𝑌𝐸𝑁𝑌 ) ) → 𝐺 ∈ USPGraph )
7 2 eleq2i ( 𝑌𝐸𝑌 ∈ ( Edg ‘ 𝐺 ) )
8 7 biimpi ( 𝑌𝐸𝑌 ∈ ( Edg ‘ 𝐺 ) )
9 8 ad2antrl ( ( 𝐺 ∈ USPGraph ∧ ( 𝑌𝐸𝑁𝑌 ) ) → 𝑌 ∈ ( Edg ‘ 𝐺 ) )
10 simprr ( ( 𝐺 ∈ USPGraph ∧ ( 𝑌𝐸𝑁𝑌 ) ) → 𝑁𝑌 )
11 6 9 10 3jca ( ( 𝐺 ∈ USPGraph ∧ ( 𝑌𝐸𝑁𝑌 ) ) → ( 𝐺 ∈ USPGraph ∧ 𝑌 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁𝑌 ) )
12 uspgredg2vtxeu ( ( 𝐺 ∈ USPGraph ∧ 𝑌 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁𝑌 ) → ∃! 𝑧 ∈ ( Vtx ‘ 𝐺 ) 𝑌 = { 𝑁 , 𝑧 } )
13 reueq1 ( 𝑉 = ( Vtx ‘ 𝐺 ) → ( ∃! 𝑧𝑉 𝑌 = { 𝑁 , 𝑧 } ↔ ∃! 𝑧 ∈ ( Vtx ‘ 𝐺 ) 𝑌 = { 𝑁 , 𝑧 } ) )
14 1 13 ax-mp ( ∃! 𝑧𝑉 𝑌 = { 𝑁 , 𝑧 } ↔ ∃! 𝑧 ∈ ( Vtx ‘ 𝐺 ) 𝑌 = { 𝑁 , 𝑧 } )
15 12 14 sylibr ( ( 𝐺 ∈ USPGraph ∧ 𝑌 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁𝑌 ) → ∃! 𝑧𝑉 𝑌 = { 𝑁 , 𝑧 } )
16 riotacl ( ∃! 𝑧𝑉 𝑌 = { 𝑁 , 𝑧 } → ( 𝑧𝑉 𝑌 = { 𝑁 , 𝑧 } ) ∈ 𝑉 )
17 11 15 16 3syl ( ( 𝐺 ∈ USPGraph ∧ ( 𝑌𝐸𝑁𝑌 ) ) → ( 𝑧𝑉 𝑌 = { 𝑁 , 𝑧 } ) ∈ 𝑉 )
18 5 17 sylan2b ( ( 𝐺 ∈ USPGraph ∧ 𝑌𝐴 ) → ( 𝑧𝑉 𝑌 = { 𝑁 , 𝑧 } ) ∈ 𝑉 )