| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							uspgredg2v.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							uspgredg2v.e | 
							⊢ 𝐸  =  ( Edg ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							uspgredg2v.a | 
							⊢ 𝐴  =  { 𝑒  ∈  𝐸  ∣  𝑁  ∈  𝑒 }  | 
						
						
							| 4 | 
							
								
							 | 
							eleq2 | 
							⊢ ( 𝑒  =  𝑌  →  ( 𝑁  ∈  𝑒  ↔  𝑁  ∈  𝑌 ) )  | 
						
						
							| 5 | 
							
								4 3
							 | 
							elrab2 | 
							⊢ ( 𝑌  ∈  𝐴  ↔  ( 𝑌  ∈  𝐸  ∧  𝑁  ∈  𝑌 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐺  ∈  USPGraph  ∧  ( 𝑌  ∈  𝐸  ∧  𝑁  ∈  𝑌 ) )  →  𝐺  ∈  USPGraph )  | 
						
						
							| 7 | 
							
								2
							 | 
							eleq2i | 
							⊢ ( 𝑌  ∈  𝐸  ↔  𝑌  ∈  ( Edg ‘ 𝐺 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							biimpi | 
							⊢ ( 𝑌  ∈  𝐸  →  𝑌  ∈  ( Edg ‘ 𝐺 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							ad2antrl | 
							⊢ ( ( 𝐺  ∈  USPGraph  ∧  ( 𝑌  ∈  𝐸  ∧  𝑁  ∈  𝑌 ) )  →  𝑌  ∈  ( Edg ‘ 𝐺 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simprr | 
							⊢ ( ( 𝐺  ∈  USPGraph  ∧  ( 𝑌  ∈  𝐸  ∧  𝑁  ∈  𝑌 ) )  →  𝑁  ∈  𝑌 )  | 
						
						
							| 11 | 
							
								6 9 10
							 | 
							3jca | 
							⊢ ( ( 𝐺  ∈  USPGraph  ∧  ( 𝑌  ∈  𝐸  ∧  𝑁  ∈  𝑌 ) )  →  ( 𝐺  ∈  USPGraph  ∧  𝑌  ∈  ( Edg ‘ 𝐺 )  ∧  𝑁  ∈  𝑌 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							uspgredg2vtxeu | 
							⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑌  ∈  ( Edg ‘ 𝐺 )  ∧  𝑁  ∈  𝑌 )  →  ∃! 𝑧  ∈  ( Vtx ‘ 𝐺 ) 𝑌  =  { 𝑁 ,  𝑧 } )  | 
						
						
							| 13 | 
							
								
							 | 
							reueq1 | 
							⊢ ( 𝑉  =  ( Vtx ‘ 𝐺 )  →  ( ∃! 𝑧  ∈  𝑉 𝑌  =  { 𝑁 ,  𝑧 }  ↔  ∃! 𝑧  ∈  ( Vtx ‘ 𝐺 ) 𝑌  =  { 𝑁 ,  𝑧 } ) )  | 
						
						
							| 14 | 
							
								1 13
							 | 
							ax-mp | 
							⊢ ( ∃! 𝑧  ∈  𝑉 𝑌  =  { 𝑁 ,  𝑧 }  ↔  ∃! 𝑧  ∈  ( Vtx ‘ 𝐺 ) 𝑌  =  { 𝑁 ,  𝑧 } )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							sylibr | 
							⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑌  ∈  ( Edg ‘ 𝐺 )  ∧  𝑁  ∈  𝑌 )  →  ∃! 𝑧  ∈  𝑉 𝑌  =  { 𝑁 ,  𝑧 } )  | 
						
						
							| 16 | 
							
								
							 | 
							riotacl | 
							⊢ ( ∃! 𝑧  ∈  𝑉 𝑌  =  { 𝑁 ,  𝑧 }  →  ( ℩ 𝑧  ∈  𝑉 𝑌  =  { 𝑁 ,  𝑧 } )  ∈  𝑉 )  | 
						
						
							| 17 | 
							
								11 15 16
							 | 
							3syl | 
							⊢ ( ( 𝐺  ∈  USPGraph  ∧  ( 𝑌  ∈  𝐸  ∧  𝑁  ∈  𝑌 ) )  →  ( ℩ 𝑧  ∈  𝑉 𝑌  =  { 𝑁 ,  𝑧 } )  ∈  𝑉 )  | 
						
						
							| 18 | 
							
								5 17
							 | 
							sylan2b | 
							⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑌  ∈  𝐴 )  →  ( ℩ 𝑧  ∈  𝑉 𝑌  =  { 𝑁 ,  𝑧 } )  ∈  𝑉 )  |