Step |
Hyp |
Ref |
Expression |
1 |
|
uspgredg2v.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
uspgredg2v.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
uspgredg2v.a |
⊢ 𝐴 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒 } |
4 |
|
eleq2 |
⊢ ( 𝑒 = 𝑌 → ( 𝑁 ∈ 𝑒 ↔ 𝑁 ∈ 𝑌 ) ) |
5 |
4 3
|
elrab2 |
⊢ ( 𝑌 ∈ 𝐴 ↔ ( 𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌 ) ) |
6 |
|
simpl |
⊢ ( ( 𝐺 ∈ USPGraph ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌 ) ) → 𝐺 ∈ USPGraph ) |
7 |
2
|
eleq2i |
⊢ ( 𝑌 ∈ 𝐸 ↔ 𝑌 ∈ ( Edg ‘ 𝐺 ) ) |
8 |
7
|
biimpi |
⊢ ( 𝑌 ∈ 𝐸 → 𝑌 ∈ ( Edg ‘ 𝐺 ) ) |
9 |
8
|
ad2antrl |
⊢ ( ( 𝐺 ∈ USPGraph ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌 ) ) → 𝑌 ∈ ( Edg ‘ 𝐺 ) ) |
10 |
|
simprr |
⊢ ( ( 𝐺 ∈ USPGraph ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌 ) ) → 𝑁 ∈ 𝑌 ) |
11 |
6 9 10
|
3jca |
⊢ ( ( 𝐺 ∈ USPGraph ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌 ) ) → ( 𝐺 ∈ USPGraph ∧ 𝑌 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑌 ) ) |
12 |
|
uspgredg2vtxeu |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑌 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑌 ) → ∃! 𝑧 ∈ ( Vtx ‘ 𝐺 ) 𝑌 = { 𝑁 , 𝑧 } ) |
13 |
|
reueq1 |
⊢ ( 𝑉 = ( Vtx ‘ 𝐺 ) → ( ∃! 𝑧 ∈ 𝑉 𝑌 = { 𝑁 , 𝑧 } ↔ ∃! 𝑧 ∈ ( Vtx ‘ 𝐺 ) 𝑌 = { 𝑁 , 𝑧 } ) ) |
14 |
1 13
|
ax-mp |
⊢ ( ∃! 𝑧 ∈ 𝑉 𝑌 = { 𝑁 , 𝑧 } ↔ ∃! 𝑧 ∈ ( Vtx ‘ 𝐺 ) 𝑌 = { 𝑁 , 𝑧 } ) |
15 |
12 14
|
sylibr |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑌 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑁 ∈ 𝑌 ) → ∃! 𝑧 ∈ 𝑉 𝑌 = { 𝑁 , 𝑧 } ) |
16 |
|
riotacl |
⊢ ( ∃! 𝑧 ∈ 𝑉 𝑌 = { 𝑁 , 𝑧 } → ( ℩ 𝑧 ∈ 𝑉 𝑌 = { 𝑁 , 𝑧 } ) ∈ 𝑉 ) |
17 |
11 15 16
|
3syl |
⊢ ( ( 𝐺 ∈ USPGraph ∧ ( 𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌 ) ) → ( ℩ 𝑧 ∈ 𝑉 𝑌 = { 𝑁 , 𝑧 } ) ∈ 𝑉 ) |
18 |
5 17
|
sylan2b |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑌 ∈ 𝐴 ) → ( ℩ 𝑧 ∈ 𝑉 𝑌 = { 𝑁 , 𝑧 } ) ∈ 𝑉 ) |