Step |
Hyp |
Ref |
Expression |
1 |
|
uspgredgiedg.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
2 |
|
uspgredgiedg.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
2
|
uspgrf1oedg |
⊢ ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
4 |
|
f1oeq3 |
⊢ ( 𝐸 = ( Edg ‘ 𝐺 ) → ( 𝐼 : dom 𝐼 –1-1-onto→ 𝐸 ↔ 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) ) ) |
5 |
1 4
|
ax-mp |
⊢ ( 𝐼 : dom 𝐼 –1-1-onto→ 𝐸 ↔ 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
6 |
3 5
|
sylibr |
⊢ ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼 –1-1-onto→ 𝐸 ) |
7 |
|
f1ofveu |
⊢ ( ( 𝐼 : dom 𝐼 –1-1-onto→ 𝐸 ∧ 𝐾 ∈ 𝐸 ) → ∃! 𝑥 ∈ dom 𝐼 ( 𝐼 ‘ 𝑥 ) = 𝐾 ) |
8 |
6 7
|
sylan |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐾 ∈ 𝐸 ) → ∃! 𝑥 ∈ dom 𝐼 ( 𝐼 ‘ 𝑥 ) = 𝐾 ) |
9 |
|
eqcom |
⊢ ( 𝐾 = ( 𝐼 ‘ 𝑥 ) ↔ ( 𝐼 ‘ 𝑥 ) = 𝐾 ) |
10 |
9
|
reubii |
⊢ ( ∃! 𝑥 ∈ dom 𝐼 𝐾 = ( 𝐼 ‘ 𝑥 ) ↔ ∃! 𝑥 ∈ dom 𝐼 ( 𝐼 ‘ 𝑥 ) = 𝐾 ) |
11 |
8 10
|
sylibr |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝐾 ∈ 𝐸 ) → ∃! 𝑥 ∈ dom 𝐼 𝐾 = ( 𝐼 ‘ 𝑥 ) ) |