| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uspgredgiedg.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 2 |  | uspgredgiedg.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 | 2 | uspgrf1oedg | ⊢ ( 𝐺  ∈  USPGraph  →  𝐼 : dom  𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) ) | 
						
							| 4 |  | f1oeq3 | ⊢ ( 𝐸  =  ( Edg ‘ 𝐺 )  →  ( 𝐼 : dom  𝐼 –1-1-onto→ 𝐸  ↔  𝐼 : dom  𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) ) ) | 
						
							| 5 | 1 4 | ax-mp | ⊢ ( 𝐼 : dom  𝐼 –1-1-onto→ 𝐸  ↔  𝐼 : dom  𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) ) | 
						
							| 6 | 3 5 | sylibr | ⊢ ( 𝐺  ∈  USPGraph  →  𝐼 : dom  𝐼 –1-1-onto→ 𝐸 ) | 
						
							| 7 |  | f1ofveu | ⊢ ( ( 𝐼 : dom  𝐼 –1-1-onto→ 𝐸  ∧  𝐾  ∈  𝐸 )  →  ∃! 𝑥  ∈  dom  𝐼 ( 𝐼 ‘ 𝑥 )  =  𝐾 ) | 
						
							| 8 | 6 7 | sylan | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝐾  ∈  𝐸 )  →  ∃! 𝑥  ∈  dom  𝐼 ( 𝐼 ‘ 𝑥 )  =  𝐾 ) | 
						
							| 9 |  | eqcom | ⊢ ( 𝐾  =  ( 𝐼 ‘ 𝑥 )  ↔  ( 𝐼 ‘ 𝑥 )  =  𝐾 ) | 
						
							| 10 | 9 | reubii | ⊢ ( ∃! 𝑥  ∈  dom  𝐼 𝐾  =  ( 𝐼 ‘ 𝑥 )  ↔  ∃! 𝑥  ∈  dom  𝐼 ( 𝐼 ‘ 𝑥 )  =  𝐾 ) | 
						
							| 11 | 8 10 | sylibr | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝐾  ∈  𝐸 )  →  ∃! 𝑥  ∈  dom  𝐼 𝐾  =  ( 𝐼 ‘ 𝑥 ) ) |