Metamath Proof Explorer


Theorem uspgredgiedg

Description: In a simple pseudograph, for each edge there is exactly one indexed edge. (Contributed by AV, 20-Apr-2025)

Ref Expression
Hypotheses uspgredgiedg.e 𝐸 = ( Edg ‘ 𝐺 )
uspgredgiedg.i 𝐼 = ( iEdg ‘ 𝐺 )
Assertion uspgredgiedg ( ( 𝐺 ∈ USPGraph ∧ 𝐾𝐸 ) → ∃! 𝑥 ∈ dom 𝐼 𝐾 = ( 𝐼𝑥 ) )

Proof

Step Hyp Ref Expression
1 uspgredgiedg.e 𝐸 = ( Edg ‘ 𝐺 )
2 uspgredgiedg.i 𝐼 = ( iEdg ‘ 𝐺 )
3 2 uspgrf1oedg ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼1-1-onto→ ( Edg ‘ 𝐺 ) )
4 f1oeq3 ( 𝐸 = ( Edg ‘ 𝐺 ) → ( 𝐼 : dom 𝐼1-1-onto𝐸𝐼 : dom 𝐼1-1-onto→ ( Edg ‘ 𝐺 ) ) )
5 1 4 ax-mp ( 𝐼 : dom 𝐼1-1-onto𝐸𝐼 : dom 𝐼1-1-onto→ ( Edg ‘ 𝐺 ) )
6 3 5 sylibr ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼1-1-onto𝐸 )
7 f1ofveu ( ( 𝐼 : dom 𝐼1-1-onto𝐸𝐾𝐸 ) → ∃! 𝑥 ∈ dom 𝐼 ( 𝐼𝑥 ) = 𝐾 )
8 6 7 sylan ( ( 𝐺 ∈ USPGraph ∧ 𝐾𝐸 ) → ∃! 𝑥 ∈ dom 𝐼 ( 𝐼𝑥 ) = 𝐾 )
9 eqcom ( 𝐾 = ( 𝐼𝑥 ) ↔ ( 𝐼𝑥 ) = 𝐾 )
10 9 reubii ( ∃! 𝑥 ∈ dom 𝐼 𝐾 = ( 𝐼𝑥 ) ↔ ∃! 𝑥 ∈ dom 𝐼 ( 𝐼𝑥 ) = 𝐾 )
11 8 10 sylibr ( ( 𝐺 ∈ USPGraph ∧ 𝐾𝐸 ) → ∃! 𝑥 ∈ dom 𝐼 𝐾 = ( 𝐼𝑥 ) )