Metamath Proof Explorer


Theorem uspgredgleord

Description: In a simple pseudograph the number of edges which contain a given vertex is not greater than the number of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 6-Dec-2020)

Ref Expression
Hypotheses usgredgleord.v 𝑉 = ( Vtx ‘ 𝐺 )
usgredgleord.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion uspgredgleord ( ( 𝐺 ∈ USPGraph ∧ 𝑁𝑉 ) → ( ♯ ‘ { 𝑒𝐸𝑁𝑒 } ) ≤ ( ♯ ‘ 𝑉 ) )

Proof

Step Hyp Ref Expression
1 usgredgleord.v 𝑉 = ( Vtx ‘ 𝐺 )
2 usgredgleord.e 𝐸 = ( Edg ‘ 𝐺 )
3 1 fvexi 𝑉 ∈ V
4 eqid { 𝑒𝐸𝑁𝑒 } = { 𝑒𝐸𝑁𝑒 }
5 eqid ( 𝑥 ∈ { 𝑒𝐸𝑁𝑒 } ↦ ( 𝑦𝑉 𝑥 = { 𝑁 , 𝑦 } ) ) = ( 𝑥 ∈ { 𝑒𝐸𝑁𝑒 } ↦ ( 𝑦𝑉 𝑥 = { 𝑁 , 𝑦 } ) )
6 1 2 4 5 uspgredg2v ( ( 𝐺 ∈ USPGraph ∧ 𝑁𝑉 ) → ( 𝑥 ∈ { 𝑒𝐸𝑁𝑒 } ↦ ( 𝑦𝑉 𝑥 = { 𝑁 , 𝑦 } ) ) : { 𝑒𝐸𝑁𝑒 } –1-1𝑉 )
7 f1domg ( 𝑉 ∈ V → ( ( 𝑥 ∈ { 𝑒𝐸𝑁𝑒 } ↦ ( 𝑦𝑉 𝑥 = { 𝑁 , 𝑦 } ) ) : { 𝑒𝐸𝑁𝑒 } –1-1𝑉 → { 𝑒𝐸𝑁𝑒 } ≼ 𝑉 ) )
8 3 6 7 mpsyl ( ( 𝐺 ∈ USPGraph ∧ 𝑁𝑉 ) → { 𝑒𝐸𝑁𝑒 } ≼ 𝑉 )
9 hashdomi ( { 𝑒𝐸𝑁𝑒 } ≼ 𝑉 → ( ♯ ‘ { 𝑒𝐸𝑁𝑒 } ) ≤ ( ♯ ‘ 𝑉 ) )
10 8 9 syl ( ( 𝐺 ∈ USPGraph ∧ 𝑁𝑉 ) → ( ♯ ‘ { 𝑒𝐸𝑁𝑒 } ) ≤ ( ♯ ‘ 𝑉 ) )