| Step | Hyp | Ref | Expression | 
						
							| 1 |  | usgredgleord.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | usgredgleord.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 4 |  | eqid | ⊢ { 𝑒  ∈  𝐸  ∣  𝑁  ∈  𝑒 }  =  { 𝑒  ∈  𝐸  ∣  𝑁  ∈  𝑒 } | 
						
							| 5 |  | eqid | ⊢ ( 𝑥  ∈  { 𝑒  ∈  𝐸  ∣  𝑁  ∈  𝑒 }  ↦  ( ℩ 𝑦  ∈  𝑉 𝑥  =  { 𝑁 ,  𝑦 } ) )  =  ( 𝑥  ∈  { 𝑒  ∈  𝐸  ∣  𝑁  ∈  𝑒 }  ↦  ( ℩ 𝑦  ∈  𝑉 𝑥  =  { 𝑁 ,  𝑦 } ) ) | 
						
							| 6 | 1 2 4 5 | uspgredg2v | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑁  ∈  𝑉 )  →  ( 𝑥  ∈  { 𝑒  ∈  𝐸  ∣  𝑁  ∈  𝑒 }  ↦  ( ℩ 𝑦  ∈  𝑉 𝑥  =  { 𝑁 ,  𝑦 } ) ) : { 𝑒  ∈  𝐸  ∣  𝑁  ∈  𝑒 } –1-1→ 𝑉 ) | 
						
							| 7 |  | f1domg | ⊢ ( 𝑉  ∈  V  →  ( ( 𝑥  ∈  { 𝑒  ∈  𝐸  ∣  𝑁  ∈  𝑒 }  ↦  ( ℩ 𝑦  ∈  𝑉 𝑥  =  { 𝑁 ,  𝑦 } ) ) : { 𝑒  ∈  𝐸  ∣  𝑁  ∈  𝑒 } –1-1→ 𝑉  →  { 𝑒  ∈  𝐸  ∣  𝑁  ∈  𝑒 }  ≼  𝑉 ) ) | 
						
							| 8 | 3 6 7 | mpsyl | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑁  ∈  𝑉 )  →  { 𝑒  ∈  𝐸  ∣  𝑁  ∈  𝑒 }  ≼  𝑉 ) | 
						
							| 9 |  | hashdomi | ⊢ ( { 𝑒  ∈  𝐸  ∣  𝑁  ∈  𝑒 }  ≼  𝑉  →  ( ♯ ‘ { 𝑒  ∈  𝐸  ∣  𝑁  ∈  𝑒 } )  ≤  ( ♯ ‘ 𝑉 ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑁  ∈  𝑉 )  →  ( ♯ ‘ { 𝑒  ∈  𝐸  ∣  𝑁  ∈  𝑒 } )  ≤  ( ♯ ‘ 𝑉 ) ) |