| Step | Hyp | Ref | Expression | 
						
							| 1 |  | usgrf1o.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 3 | 2 1 | uspgrf | ⊢ ( 𝐺  ∈  USPGraph  →  𝐸 : dom  𝐸 –1-1→ { 𝑥  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 } ) | 
						
							| 4 |  | f1f1orn | ⊢ ( 𝐸 : dom  𝐸 –1-1→ { 𝑥  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 }  →  𝐸 : dom  𝐸 –1-1-onto→ ran  𝐸 ) | 
						
							| 5 | 1 | rneqi | ⊢ ran  𝐸  =  ran  ( iEdg ‘ 𝐺 ) | 
						
							| 6 |  | edgval | ⊢ ( Edg ‘ 𝐺 )  =  ran  ( iEdg ‘ 𝐺 ) | 
						
							| 7 | 5 6 | eqtr4i | ⊢ ran  𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 8 |  | f1oeq3 | ⊢ ( ran  𝐸  =  ( Edg ‘ 𝐺 )  →  ( 𝐸 : dom  𝐸 –1-1-onto→ ran  𝐸  ↔  𝐸 : dom  𝐸 –1-1-onto→ ( Edg ‘ 𝐺 ) ) ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ ( 𝐸 : dom  𝐸 –1-1-onto→ ran  𝐸  ↔  𝐸 : dom  𝐸 –1-1-onto→ ( Edg ‘ 𝐺 ) ) | 
						
							| 10 | 4 9 | sylib | ⊢ ( 𝐸 : dom  𝐸 –1-1→ { 𝑥  ∈  ( 𝒫  ( Vtx ‘ 𝐺 )  ∖  { ∅ } )  ∣  ( ♯ ‘ 𝑥 )  ≤  2 }  →  𝐸 : dom  𝐸 –1-1-onto→ ( Edg ‘ 𝐺 ) ) | 
						
							| 11 | 3 10 | syl | ⊢ ( 𝐺  ∈  USPGraph  →  𝐸 : dom  𝐸 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |