Step |
Hyp |
Ref |
Expression |
1 |
|
usgrf1o.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
3 |
2 1
|
uspgrf |
⊢ ( 𝐺 ∈ USPGraph → 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
4 |
|
f1f1orn |
⊢ ( 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → 𝐸 : dom 𝐸 –1-1-onto→ ran 𝐸 ) |
5 |
1
|
rneqi |
⊢ ran 𝐸 = ran ( iEdg ‘ 𝐺 ) |
6 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
7 |
5 6
|
eqtr4i |
⊢ ran 𝐸 = ( Edg ‘ 𝐺 ) |
8 |
|
f1oeq3 |
⊢ ( ran 𝐸 = ( Edg ‘ 𝐺 ) → ( 𝐸 : dom 𝐸 –1-1-onto→ ran 𝐸 ↔ 𝐸 : dom 𝐸 –1-1-onto→ ( Edg ‘ 𝐺 ) ) ) |
9 |
7 8
|
ax-mp |
⊢ ( 𝐸 : dom 𝐸 –1-1-onto→ ran 𝐸 ↔ 𝐸 : dom 𝐸 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
10 |
4 9
|
sylib |
⊢ ( 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → 𝐸 : dom 𝐸 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
11 |
3 10
|
syl |
⊢ ( 𝐺 ∈ USPGraph → 𝐸 : dom 𝐸 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |