Step |
Hyp |
Ref |
Expression |
1 |
|
uspgredgiedg.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
2 |
|
uspgredgiedg.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
2
|
uspgrf1oedg |
⊢ ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) ) |
4 |
|
f1of |
⊢ ( 𝐼 : dom 𝐼 –1-1-onto→ ( Edg ‘ 𝐺 ) → 𝐼 : dom 𝐼 ⟶ ( Edg ‘ 𝐺 ) ) |
5 |
3 4
|
syl |
⊢ ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼 ⟶ ( Edg ‘ 𝐺 ) ) |
6 |
|
feq3 |
⊢ ( 𝐸 = ( Edg ‘ 𝐺 ) → ( 𝐼 : dom 𝐼 ⟶ 𝐸 ↔ 𝐼 : dom 𝐼 ⟶ ( Edg ‘ 𝐺 ) ) ) |
7 |
1 6
|
ax-mp |
⊢ ( 𝐼 : dom 𝐼 ⟶ 𝐸 ↔ 𝐼 : dom 𝐼 ⟶ ( Edg ‘ 𝐺 ) ) |
8 |
5 7
|
sylibr |
⊢ ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼 ⟶ 𝐸 ) |
9 |
|
fdmeu |
⊢ ( ( 𝐼 : dom 𝐼 ⟶ 𝐸 ∧ 𝑋 ∈ dom 𝐼 ) → ∃! 𝑘 ∈ 𝐸 ( 𝐼 ‘ 𝑋 ) = 𝑘 ) |
10 |
8 9
|
sylan |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼 ) → ∃! 𝑘 ∈ 𝐸 ( 𝐼 ‘ 𝑋 ) = 𝑘 ) |
11 |
|
eqcom |
⊢ ( 𝑘 = ( 𝐼 ‘ 𝑋 ) ↔ ( 𝐼 ‘ 𝑋 ) = 𝑘 ) |
12 |
11
|
reubii |
⊢ ( ∃! 𝑘 ∈ 𝐸 𝑘 = ( 𝐼 ‘ 𝑋 ) ↔ ∃! 𝑘 ∈ 𝐸 ( 𝐼 ‘ 𝑋 ) = 𝑘 ) |
13 |
10 12
|
sylibr |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼 ) → ∃! 𝑘 ∈ 𝐸 𝑘 = ( 𝐼 ‘ 𝑋 ) ) |