Metamath Proof Explorer


Theorem uspgriedgedg

Description: In a simple pseudograph, for each indexed edge there is exactly one edge. (Contributed by AV, 20-Apr-2025)

Ref Expression
Hypotheses uspgredgiedg.e 𝐸 = ( Edg ‘ 𝐺 )
uspgredgiedg.i 𝐼 = ( iEdg ‘ 𝐺 )
Assertion uspgriedgedg ( ( 𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼 ) → ∃! 𝑘𝐸 𝑘 = ( 𝐼𝑋 ) )

Proof

Step Hyp Ref Expression
1 uspgredgiedg.e 𝐸 = ( Edg ‘ 𝐺 )
2 uspgredgiedg.i 𝐼 = ( iEdg ‘ 𝐺 )
3 2 uspgrf1oedg ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼1-1-onto→ ( Edg ‘ 𝐺 ) )
4 f1of ( 𝐼 : dom 𝐼1-1-onto→ ( Edg ‘ 𝐺 ) → 𝐼 : dom 𝐼 ⟶ ( Edg ‘ 𝐺 ) )
5 3 4 syl ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼 ⟶ ( Edg ‘ 𝐺 ) )
6 feq3 ( 𝐸 = ( Edg ‘ 𝐺 ) → ( 𝐼 : dom 𝐼𝐸𝐼 : dom 𝐼 ⟶ ( Edg ‘ 𝐺 ) ) )
7 1 6 ax-mp ( 𝐼 : dom 𝐼𝐸𝐼 : dom 𝐼 ⟶ ( Edg ‘ 𝐺 ) )
8 5 7 sylibr ( 𝐺 ∈ USPGraph → 𝐼 : dom 𝐼𝐸 )
9 fdmeu ( ( 𝐼 : dom 𝐼𝐸𝑋 ∈ dom 𝐼 ) → ∃! 𝑘𝐸 ( 𝐼𝑋 ) = 𝑘 )
10 8 9 sylan ( ( 𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼 ) → ∃! 𝑘𝐸 ( 𝐼𝑋 ) = 𝑘 )
11 eqcom ( 𝑘 = ( 𝐼𝑋 ) ↔ ( 𝐼𝑋 ) = 𝑘 )
12 11 reubii ( ∃! 𝑘𝐸 𝑘 = ( 𝐼𝑋 ) ↔ ∃! 𝑘𝐸 ( 𝐼𝑋 ) = 𝑘 )
13 10 12 sylibr ( ( 𝐺 ∈ USPGraph ∧ 𝑋 ∈ dom 𝐼 ) → ∃! 𝑘𝐸 𝑘 = ( 𝐼𝑋 ) )